National Human Genome Research Institute (NHGRI)


The National Human Genome Research Institute (NHGRI) was established originally as the National Center for Human Genome Research in 1989 to lead the International Human Genome Project. NHGRI is part of the National Institutes of Health (NIH), the nation’s medical research agency ( The Human Genome Project, which had as its primary goal the sequencing of the 3 billion DNA letters that make up the human genetic instruction book, was successfully completed in April 2003.

Since completion of the Human Genome Project, NHGRI has funded and conducted research to uncover the role that the genome plays in human health and disease. (A genome is an organism's complete set of DNA, including all of its genes. Each genome contains all of the information needed to build and maintain that organism.) This research occurs across a spectrum: basic research to shed light on the structure and function of the genome; translational research to decipher the molecular bases of human diseases; and clinical research to establish how to use genomic information to advance medical care.

NHGRI also supports exploration of the complex ethical, legal, and social implications of genomics, and is committed to ensuring that the knowledge and benefits generated from genomics research are disseminated widely, both to fuel current and future researchers and to benefit the general public and promote genomic literacy.

NHGRI is organized into the Office of the Director, which provides guidance to scientific programs and oversees the general operation of the institute and seven divisions. Four divisions are housed within the Extramural Research Program (ERP), which supports and administers the role of NIH in genomic research. The ERP includes the Division of Genomic Medicine, the Division of Genome Sciences, the Division of Genomics and Society, and the Division of Extramural Operations. The Division of Intramural Research conducts scientific studies in NHGRI's labs on and around the NIH campus in Bethesda, Maryland, and comprises nine branches focused on specific areas of genomics research. The Division of Policy, Communications, and Education manages a wide range of activities, such as policy development, legislative affairs, communications, media relations, and educational outreach. The Division of Management oversees institute activities ranging from financial management to administrative services to information technology.

External research guidance and advice related to NHGRI grants comes from the National Advisory Council for Human Genome Research, which meets three times a year in Rockville, Maryland. Members include representatives from health and science disciplines, public health, social sciences, and the general public. Portions of the council meetings are open to the public and webcast on GenomeTVLive. In addition, the Division of Intramural Research Board of Scientific Counselors reviews and evaluates NHGRI’s intramural program and the work of individual investigators within the Division.

Important Events in NHGRI history

1988 — Program advisory committee on the human genome is established to advise NIH on all aspects of research in the area of genomic analysis.

1988 — The Office for Human Genome Research is created within the NIH Office of the Director. Also, NIH and the Department of Energy (DOE) sign a memorandum of understanding, outlining plans for cooperation on genome research.

1988 — NIH Director James Wyngaarden, M.D., assembles scientists, administrators, and science policy experts in Reston, Virginia, to lay out an NIH plan for the Human Genome Project.

1989 — The program advisory committee on the human genome holds its first meeting in Bethesda, Maryland.

1989 — The NIH-DOE Ethical, Legal and Social Implications (ELSI) working group is created to explore and propose options for the development of the ELSI component of the Human Genome Project.

1989 — The National Center for Human Genome Research (NCHGR) is established to carry out the NIH's component of the Human Genome Project. James Watson, Ph.D., co-discoverer of the structure of DNA, is appointed as NCHGR’s first director.

1990 — The first five-year plan with specific goals for the Human Genome Project is published.

1990 — The National Advisory Council for Human Genome Research (NACHGR) is established.

1990 — The genome research review committee is created so the center can conduct appropriate peer review of human genome grant applications.

1990 — The Human Genome Project officially begins.

1991 — NACHGR meets for the first time in Bethesda, Maryland.

1992 — James Watson resigns as first director of NCHGR. Michael Gottesman, M.D., is appointed acting center director.

1993 — The center's Division of Intramural Research is established.

1993 — Francis S. Collins, M.D., Ph.D., is appointed NCHGR director.

1993 — The Human Genome Project revises its five-year goals and extends them to September 1998.

1994 — The first genetic linkage map of the human genome is achieved one year ahead of schedule. Such maps consist of DNA patterns, called markers, positioned on chromosomes, and help researchers search for disease-related genes.

1995 — Task Force on Genetic Testing is established as a subgroup of the NIH-DOE Ethical, Legal, and Social Implications (ELSI) working group.

1996 — Human DNA sequencing begins with pilot studies at six U.S. universities.

1996 — An international team completes the DNA sequence of the first eukaryotic genome, Saccharomyces cerevisiae, or common brewer's yeast. (A eukaryote is any organism whose cells contain a nucleus and other organelles enclosed within membranes.)

1996 — The Center for Inherited Disease Research, a project co-funded by eight NIH institutes and centers to study the genetic components of complex disorders, is established on the Johns Hopkins Bayview Medical Center campus in Baltimore, Maryland.

1996 — Scientists from government, university, and commercial laboratories around the world reveal a map that pinpoints the locations of more than 16,000 genes in human DNA.

1996 — NCHGR and other researchers identify the location of the first gene associated with Parkinson's disease.

1996 — NCHGR and other researchers identify the location of the first major gene that predisposes men to prostate cancer.

1996 — The Joint NIH-DOE Committee issues an evaluation of the ELSI program of the Human Genome Project.

1997 — Department of Health and Human Services Secretary Donna E. Shalala signs documents elevating NCHGR to an NIH institute, the National Human Genome Research Institute.

1997 — A federal government-citizen group – the NIH-DOE ELSI Working Group and the National Action Plan on Breast Cancer (NAPBC) – suggests policies to limit genetic discrimination in the workplace.

1997 — NHGRI and other scientists show that three specific alterations in the breast cancer genes BRCA1 and BRCA2 are associated with an increased risk of breast, ovarian and prostate cancers.

1997 — A map of human chromosome 7 is completed. Changes in the number or structure of chromosome 7 occur frequently in human cancers.

1997 — NHGRI and other researchers identify an altered gene that causes Pendred syndrome, a genetic disorder that causes early hearing loss in children.

1998 — Vice President Al Gore announces that the Clinton administration is calling for legislation to bar employers from discriminating against workers in hiring or promotion because of their genetic makeup.

1998 — At a meeting of the Human Genome Project’s main advisory body, project planners present a new five-year plan to produce a “finished” version of the DNA sequence of the human genome by the end of year 2003, two years ahead of its original schedule. The Human Genome Project plans to generate a “working draft” that, together with the finished sequence, will cover at least 90 percent of the genome in 2001. The “working draft” will be immediately valuable to researchers and form the basis for a high-quality, “finished” genome sequence.

1998 — A major international collaborative research study finds the site of a gene for susceptibility to prostate cancer on the X chromosome. This is the first time a gene for a common type of cancer is mapped to the X chromosome.

1998 — NHGRI and other Human Genome Project-funded scientists sequence the genome of the tiny roundworm Caenorhabditis elegans. It marks the first time scientists have spelled out the instructions for a complete animal that, like humans, has a nervous system, digests food and has sex.

1999 — The pilot phase of the Human Genome Project is completed. A large-scale effort to sequence the human genome begins.

1999 — NHGRI, DOE, and the Wellcome Trust, a global charity based in London, hold a celebration of the completion and deposition of 1 billion base pairs of the human genome DNA sequence into GenBank ( GenBank is the NIH genetic sequence database, an annotated collection of all publicly available DNA sequences.

1999 — For the first time, NHGRI and other Human Genome Project-funded scientists unravel the genetic code of an entire human chromosome (chromosome 22). The findings are reported in Nature.

2000 — President Clinton signs an Executive Order to prevent genetic discrimination in the federal workplace. NHGRI programs on the ethical, legal and social implications of the Human Genome Project played a role in the development of policy principles on this issue.

2000 — Public consortium of scientists and a private companyelease a substantially complete genome sequence of the fruit fly, Drosophila melanogaster. Science publishes the findings.

2000 — Scientists in Japan and Germany report that they have unraveled the genetic code of human chromosome 21, known to be involved with Down syndrome, Alzheimer's disease, Usher syndrome, and amyotrophic lateral sclerosis, also known as Lou Gehrig's disease. Nature publishes these findings.

2000 — President Bill Clinton, NHGRI Director Francis Collins, British Prime Minister Tony Blair (via satellite), and Craig Venter, president, Celera Genomics Corp., announce the completion of the first survey of the human genome in a White House ceremony.

2000 — An international team led by NHGRI scientists discover a genetic “signature” that may help explain how malignant melanoma, a deadly form of skin cancer, can spread to other parts of the body. The findings are reported in Nature.

2000 — The NIH, the Wellcome Trust, and three private companies collaborate to form the Mouse Sequencing Consortium to accelerate the sequencing of the mouse genome.

2000 — The Human Genome Project is the recipient of the American Society of Human Genetics' Allan Award to honor the hundreds of scientists involved in deciphering the human genetic code.

2001 — The ELSI Research Programs of NHGRI and DOE cosponsor a conference to celebrate a decade of research and consider the impact of the new science on genetic research, health and policy.

2001 — The Human Genome Project publishes the first analysis of the human genome sequence, describing how it is organized and how it evolved. The analysis, published in the journal Nature, reveals that the human genome only contains 30,000 to 40,000 genes, far fewer than the 100,000 previously estimated.

2001 — NHGRI scientists use DNA microarray technology to develop a gene test that differentiates hereditary and sporadic breast cancer types. The New England Journal of Medicine publishes the findings. (DNA microarray technology is a collection of microscopic DNA spots attached to a solid surface that scientists use to measure the expression levels of large numbers of genes simultaneously.)

2001 — NHGRI and Human Genome Project-funded scientists find a new tumor suppressor gene on human chromosome 7 that is involved in breast, prostate and other cancers. A single post-doctoral researcher, using the “working draft” data, pins down the gene in weeks. In the past, the same work would have taken several years and contributions from many scientists.

2001 — The Mouse Genome Sequencing Consortium announces it has achieved three-fold coverage of the mouse DNA sequence. The publicly available data represents 95 percent of the mouse sequence, and can be used to uncover human genes by comparing the genomes of mouse and human to each other.

2001 — Researchers from NHGRI and Sweden's Lund University develop a method of accurately diagnosing four complex, hard-to-distinguish childhood cancers using DNA microarray technology and artificial neural networks. Nature Medicine publishes the results.

2001 — NHGRI creates the Centers for Excellence in Genomic Sciences (CEGS) program, which supports interdisciplinary research teams that use data sets and technologies developed by the Human Genome Project. The initial CEGS grants for innovative genomic research projects are awarded to the University of Washington and Yale University.

2001 — To inform the public, students, and healthcare providers in minority communities about the scientific advances and the ethical, legal, and social impact of the Human Genome Project, NHGRI co-sponsors a forum, entitled The Human Genome Project: The Challenges and Impact of Human Genome Research for Minority Communities.

2001 — NHGRI holds a planning conference called, Beyond the Beginning: The Future of Genomics at the Airlie Conference Center in Warrenton, Virginia. Attendees help develop a broad vision for the future of genomics research as the achievement of the Human Genome Project goals approaches.

2002 — NHGRI scientists and collaborators at Johns Hopkins Medical Institution in Baltimore and The Cleveland Clinic identify a gene on chromosome 1 that is associated with an inherited form of prostate cancer in some families. Nature Genetics publishes the findings.

2002 — NHGRI and the NIH Office of Rare Diseases launch a new information center – the Genetic and Rare Diseases Information Center (GARD) — to provide accurate, reliable information about genetic and rare diseases to patients and their families.

2002 — NHGRI chooses the next set of model organisms to sequence as DNA sequencing capacity becomes available. They include the chicken, chimpanzee, several species of fungi, a sea urchin, the honeybee and Tetrahymena, a microscopic animal commonly used in laboratory studies.

2002 — NHGRI launches a redesigned Web site,, which provides improved usability and easy access to new content for a wide range of users.

2002 — An international team of researchers led by NHGRI pinpoints the gene defect responsible for a form of the devastating brain disorder microcephaly, found in nine generations of infants among the Old Order Amish. Nature Genetics publishes the results, which may shed new light on normal brain development.

2002 — NHGRI publishes, “A User's Guide to the Human Genome,” in Nature Genetics. The “how-to” manual is designed to encourage scientists to explore the human genome sequence available in public databases

2002 — NHGRI, in cooperation with five other NIH institutes, awards a grant to combine three of the world's current protein databases into a single global resource called UniProt (

2002 — NHGRI launches the International HapMap Project, a $100 million, public-private effort to create a new type of genome map that will chart genetic variation among human populations. The HapMap serves as a tool to speed the search for the genes involved in common disorders such as asthma, diabetes, heart disease and cancer. The SNP Consortium, a collaborative effort among industry, academic centers and the Wellcome Trust, helps provide an instrumental public catalog of genetic variation.

2002 — NHGRI names Alan E. Guttmacher, M.D., as its new deputy director. It selects Eric D. Green, M.D., Ph.D., as its new scientific director, and William A. Gahl, M.D., Ph.D., as its new intramural clinical director.

2003 — NHGRI launches the ENCyclopedia of DNA Elements (ENCODE) pilot project to identify all functional elements in human DNA.

2003 — NHGRI celebrates the successful completion of the Human Genome Project — two years ahead of schedule and under budget. The event coincides with the 50th anniversary of the description of DNA’s double helix and the 2003 publication of the vision document for the future of genomics research.

2003–NHGRI publishes a new strategic plan for the “genomics era” in Nature, titled, “A Vision for the Future of Genomics Research,” the culmination of two years of planning with the research community.

2003 — NHGRI researchers identify the gene that causes the premature aging disorder progeria. Nature publishes the findings (

2003 — NHGRI researchers make discoveries in mice that may lead to safer methods of gene therapy. They show that a genetically engineered virus used in gene therapy trials tends to insert itself at the beginning of genes in the target cell, potentially disrupting gene function.

2003 — A detailed analysis of the sequence of the human Y chromosome is published in the journal Nature.

2003 — A detailed analysis of the sequence of chromosome 7 uncovers structural features that appear to promote genetic changes that can cause disease. The findings by a multinational team of scientists are reported in the journal Nature.

2003 — A team of researchers, led by NHGRI, compares the genomes of 13 vertebrate animals. The results, published in Nature, suggest that comparing a wide variety of species' genomes will illuminate genomic evolution and help identify functional elements in the human genome.

2003 — NHGRI establishes the Education and Community Involvement Branch to engage the public in understanding genomics and accompanying ethical, legal and social issues.

2003 — NHGRI announces the first grants in a three-year, $36 million scientific program called ENCyclopedia Of DNA Elements (ENCODE), aimed at discovering all parts of the human genome that are crucial to biological function (

2003 — NHGRI selects five centers to carry out a new generation of large-scale genome sequencing projects to realize the promise of the Human Genome Project and expand understanding of human health and disease.

2003 — NHGRI announces formation of the Social and Behavioral Research Branch within its Division of Intramural Research (

2003 — NHGRI announces the first draft version of the chimpanzee genome sequence and its alignment with the human genome.

2003 — The International HapMap Consortium publishes a paper that sets forth the scientific rationale and strategy behind its effort to create a map of human genetic variation.

2004 — NHGRI announces that the first draft version of the honey bee genome sequence has been deposited into free public databases.

2004 — NHGRI and other scientists successfully create transgenic zebra fish using sperm genetically modified and grown in a laboratory dish. This achievement has implications for wide ranging research, from developmental biology to gene therapy. The study is published in the Proceedings of the National Academy of Sciences.

2004 — The Genetic and Rare Disease Information Center announces efforts to enable healthcare workers, patients and families who speak Spanish to take advantage of its free services.

2004 — NHGRI's Large-Scale Sequencing Research Network announces it will begin genome sequencing of the first marsupial, the gray short-tailed South American opossum, and more than a dozen other model organisms to further understanding of the human genome.

2004 — NHGRI announces that the first draft version of the chicken genome sequence has been deposited into free public databases.

2004 — NHGRI researchers and other scientists find variants in a gene that may predispose people to type 2 diabetes, the most common form of the disease.

2004 — NHGRI announces that the International Sequencing Consortium has launched a free online resource, where scientists and the public can view the latest information on sequencing projects for animal, plant and eukaryotic genomes.

2004 — The International Rat Genome Sequencing Project Consortium announces the publication of a high-quality draft sequence of the rat genome. The publication is important because of the rat’s ubiquitous use as a disease research model.

2004 — NHGRI and the Melbourne-based Australian Genome Research Facility, Ltd., announce a partnership to sequence the genome of the tammar wallaby, a member of the kangaroo family.

2004 — NHGRI announces that the first draft version of the dog genome sequence has been deposited into free public databases.

2004 — NHGRI launches the NHGRI Policy and Legislative Database, an online resource to enable researchers, health professionals, and the public to locate information on laws and policies related to genetic discrimination and other genomic issues (

2004 — NHGRI scientists and an interdisciplinary consortium of researchers from 11 universities and institutions discover a possible inherited component for lung cancer, a disease normally associated with external causes, such as cigarette smoking.

2004 — NHGRI's Large-Scale Sequencing Research Network announces a comprehensive strategic plan to sequence 18 additional organisms, including the African savannah elephant, the domestic cat, and the orangutan to help interpret the human genome.

2004 — NHGRI launches four interdisciplinary Centers for Excellence in Ethical, Legal and Social Implications Research to address some of the most pressing societal questions raised by recent advances in genetic and genomic research (

2004 — NHGRI announces that the first draft version of the cow genome sequence has been deposited into free public databases.

2004 — NHGRI awards more than $38 million in grants to develop new genome sequencing technologies to accomplish the near-term goal of sequencing a mammalian-sized genome for $100,000, and the longer-term challenge of sequencing an individual human genome for $1,000 or less. These are the first grants from the Advanced Sequencing Technology Program (

2004 — The International Human Genome Sequencing Consortium, led in the United States by NHGRI and the Department of Energy, publishes its scientific description of the finished human genome sequence. The analysis, published in Nature, reduces the estimated number of human protein-coding genes from 35,000 to only 20,000-25,000, a surprisingly low number for our species.

2004 — The ENCODE Consortium publishes a paper in Science that sets forth the scientific rationale and strategy behind its quest to produce a comprehensive catalog of all parts of the human genome crucial to biological function.

2004 — NHGRI partners with the Office of the U.S. Surgeon General to launch a free computer program, My Family Health Portrait, which the public can use to record important information about their family health history and share with their health care providers (

2004 — NHGRI and the International Chicken Genome Sequencing Consortium publish in Nature an analysis comparing the chicken and human genomes. It is the first bird to have its genome sequenced and analyzed.

2005 — NIH hails the first comprehensive analysis of the sequence of the human X chromosome. The work, some of which was carried out as part of the Human Genome Project, is published in Nature. It provides sweeping new insights into the evolution of sex chromosomes and the biological differences between males and females.

2005 — The first comprehensive comparison of the genetic blueprints of humans and chimpanzees is published in the journal Nature, showing that we share 96 percent of our DNA with our closest living relatives.

2005 — NIH awards contracts that will give researchers unprecedented access to two private collections of knockout mice, providing valuable models for the study of human disease and laying the groundwork for a public, genome-wide library of knockout mice.

2005 — The International HapMap Consortium publishes a comprehensive catalog of human genetic variation. This landmark achievement published in Nature, will serve to accelerate the search for genes involved in common diseases, such as asthma, diabetes, cancer, and heart disease.

2005 — NHGRI and the National Cancer Institute (NCI) launch The Cancer Genome Atlas (TCGA), a comprehensive effort to accelerate understanding of the molecular basis of cancer through the application of genome analysis technologies (

2006 — The Genetic Association Information Network (GAIN), a public-private partnership led by NHGRI, is established to help find the genetic causes of common diseases by conducting large-scale genomic studies and making their results broadly available to researchers worldwide.

2006–NIH launches the Genes, Environment and Health Initiative (GEI) to understand the interactions of genetics and environment in common conditions and disease. It is managed by NHGRI and the National Institute of Environmental Health Sciences.

2006 — Researchers at the NIH Chemical Genomics Center – a trans-NIH center administered by NHGRI – develop a new screening approach that can profile compounds in large chemical libraries more accurately and precisely than standard methods. This advance speeds the production of data that can be used to identify molecular leads for drug discovery.

2006 — NHGRI awards grants totaling more than $13 million to further speed the development of innovative sequencing technologies that reduce the cost of DNA sequencing and expand the use of genomics in medical research and health care.

2007 — In the most comprehensive look at genetic risk factors for type 2 diabetes to date, NHGRI researchers, working in close collaboration with two other scientists, identify at least four new genetic variants associated with increased risk of diabetes and confirm existence of another six. All three reports are published in Science.

2007 — NHGRI establishes the Genomic Healthcare Branch to promote the effective integration of genomic discoveries into healthcare.

2007 — NHGRI establishes the Office of Population Genomics to promote multidisciplinary research in epidemiology and genomics.

2007 — The Electronic Medical Records and Genomics (eMERGE) Network is announced in September 2007. Researchers use DNA biorepositories and electronic medical records in large-scale studies to better understand the underlying genomics of disease (

2007 — NHGRI awards grants totaling more than $80 million over four years to expand the ENCODE project, which, in its pilot phase, yielded provocative new insights into the organization and function of the human genome.

2007 — An international team of scientists, supported in part by NHGRI, announces that its systematic effort to map the genomic changes underlying lung cancer has uncovered a critical gene alteration not previously linked to any form of cancer. The results are published in Nature.

2007 — In a White House Ceremony, NHGRI Director Francis S. Collins is awarded the Presidential Medal of Freedom by President George W. Bush for his leadership of and contributions to the Human Genome Project.

2007 — To better understand the role that bacteria, fungi, and other microbes play in human health, NIH launches the Human Microbiome Project. The human microbiome is all microorganisms present in or on the human body. NHGRI, the National Institute of Allergy and Infectious Diseases, and the National Institute of Dental and Craniofacial Research lead the project on behalf of NIH.

2008 — The NIH Genome-Wide Association Studies (GWAS) data sharing policy goes into effect to promote access to genomics research data while ensuring research participant protections.

2008 — An international research consortium announces the establishment of the 1000 Genomes Project. This effort will involve sequencing the genomes of at least 1000 people from around the world to create the most detailed and medically useful picture to date of human genetic variation. NHGRI is a major funder of the 1000 Genomes Project.

2008 — NHGRI and the National Institute of Environmental Health Sciences collaborate with the U.S. Environmental Protection Agency to begin testing the safety of chemicals, ranging from pesticides to household cleaners. The initiative uses the NIH Chemical Genomics Center's high-speed, automated screening robots to test suspected toxic compounds using cells and isolated molecular targets instead of laboratory animals.

2008 — NIH announces the establishment of the NIH Intramural Center for Research on Genomics and Global Health (CRGGH), a new venue for research about the way populations are impacted by diseases such as obesity, diabetes and hypertension. CRGGH is part of the NIH Office of Intramural Research and administered by NHGRI.

2008 — The first analysis of the genome sequence of the duck-billed platypus reveals clues about how genomes were organized during the early evolution of mammals. The research, published in Nature, was supported in part by NHGRI.

2008 — President George W. Bush signs into law the Genetic Information Nondiscrimination Act (GINA) that will protect Americans against discrimination based on their genetic information when it comes to health insurance and employment. The bill passed the Senate unanimously and the House by a vote of 414 to 1.

2008 — Francis S. Collins steps down as NHGRI director. Alan E. Guttmacher is named acting director of NHGRI.

2008 — NIH funds a network of nine centers across the country that will use high tech screening methods to identify small molecules for use as biological probes and targets for drug development. The NIH Chemical Genomics Center, administered by NHGRI, is funded as part of the network.

2008 — The TCGA Research Network reports the first results of its large-scale, comprehensive study of the most common form of brain cancer, glioblastoma. In a paper published in Nature, the TCGA team describes the discovery of new genetic mutations and other types of DNA alterations with potential implications for the diagnosis and treatment of glioblastoma.

2008 — NHGRI researchers help to identify a protein that plays matchmaker between two key types of white blood cells, T and B cells, enabling them to interact in a way that is crucial to establishing long-lasting immunity after an infection. The results are published in Nature.

2008 — The NIH Human Microbiome Project, collaborating with scientists around the globe, announces they will form the International Human Microbiome Consortium, an effort that will enable researchers to characterize the relationship of the human microbiome in the maintenance of health and in disease.

2008 — A multi-institution team, funded by NHGRI, reports results in Nature of the largest effort to date to chart the genetic changes involved in the most common form of lung cancer, lung adenocarcinoma.

2008 — An international consortium including NHGRI researchers, in search of the genetic risk factors for obesity, identifies six new genetic variants associated with BMI, or body mass index, a measurement that compares height to weight. The results, funded in part by NIH, are published online in the journal Nature Genetics.

2009 — Researchers from NIH and NHGRI find a new way of detecting functional regions in the human genome. The novel approach involves looking at the three-dimensional shape of the genome's DNA and not just reading the sequence of the four-letter alphabet of its DNA bases. The results are published online in Science.

2009 — A team led by NHGRI scientists identifies a gene that suppresses tumor growth in melanoma, the deadliest form of skin cancer. The finding is reported in the journal Nature Genetics as part of a systematic genetic analysis of a group of enzymes implicated in skin cancer and many other types of cancer.

2009 — NHGRI announces the release of the first version of PhenX, a free online toolkit aimed at standardizing measurements of research subjects' physical characteristics and environmental exposures. The tools give researchers more power to compare data from multiple studies, accelerating efforts to understand the complex genetic and environmental factors that cause cancer, heart disease, depression and other common diseases.

2009 — The U.S. Department of Agriculture and NIH announce that an international consortium of researchers has completed an analysis of the genome of domestic cattle, the first livestock mammal to have its genetic blueprint sequenced and analyzed. The landmark research, which received major support from NHGRI, bolsters efforts to produce better beef and dairy products and will lead to a better understanding of the human genome.

2009 — NIH launches the first integrated drug development pipeline to produce new treatments for rare and neglected diseases. The $24 million program, whose laboratory operations are managed by NHGRI at the NIH Chemical Genomics Center, jumpstarts a trans-NIH initiative called the Therapeutics for Rare and Neglected Diseases program.

2009 — NHGRI researchers studying the skin's microbiome publish an analysis in Science revealing that our skin is home to a much wider array of bacteria than previously thought. The study, done in collaboration with other NIH researchers, also shows the bacteria that live under your arms are likely to be more similar to those under another person's arm than they are to the bacteria that live on your forearm.

2009 — An NIH research team led by NHGRI researchers finds that a single evolutionary event appears to explain the short, curved legs that characterize all of today's dachshunds, corgis, basset hounds and at least 16 other breeds of dogs. The unexpected discovery provides new clues about how physical differences may arise within species and suggests new approaches to understanding a form of human dwarfism. The results are reported in Science.

2009 — NIH researchers report in the online issue of PLoS Genetics the discovery of five genetic variants related to blood pressure in African Americans, findings that may provide new clues to treating and preventing hypertension. This effort, which includes NHGRI researchers, marks the first time that a relatively new research approach, called a genome-wide association study, has focused on blood pressure and hypertension in an African-American population.

2009 — Researchers, supported in part by NHGRI, generate massive amounts of DNA sequencing data of the complete set of exons, or “exomes,” from the genomes of 12 people. The findings, which demonstrate the feasibility of this strategy to find rare genetic variants that may cause or contribute to disease, are published online in Nature.

2009 — NHGRI researchers lead a study that identifies a new group of genetic mutations involved in melanoma, the deadliest form of skin cancer. This discovery, published in Nature Genetics, is particularly encouraging because some of the mutations, which were found in nearly one-fifth of melanoma cases, reside in a gene already targeted by a drug approved for certain types of breast cancer.

2009 — NHGRI launches the next generation of its online Talking Glossary of Genetic Terms. The glossary contains several new features, including more than 100 colorful illustrations and more than two dozen 3-D animations that allow the user to dive in and see genetic concepts in action at the cellular level.

2009 — An NHGRI-led research team finds that carriers of a rare, genetic condition called Gaucher disease face a risk of developing Parkinson's disease more than five times greater than the general public. The findings are published in the New England Journal of Medicine.

2009 — NIH director Francis S. Collins, M.D., Ph.D., announces the appointment of Eric D. Green, M.D., Ph.D., to be director of NHGRI. It is the first time an institute director has risen to lead the entire NIH and subsequently picked his own successor.

2010 — NHGRI launches the Genetics/Genomics Competency Center (G2C2), an online tool to help educators teach the next generation of health professionals about genetics and genomics.

2010 — An international research team, including researchers from NHGRI, produce the first whole genome sequence of the 3 billion letters in the Neanderthal genome.

2010 — NIH and the Wellcome Trust, a global charity based in London, announce a partnership called the Human Heredity and Health in Africa project (H3Africa) to support population-based genetic studies in Africa by Africa. NHGRI helps administer H3Africa.

2010 — Daniel L. Kastner, M.D., Ph.D., is appointed scientific director of the NHGRI.

2010 — NIH announces awards to support the Genotype-Tissue Expression (GTEx) project, an initiative to understand how genetic variation may control gene activity and its relationship to disease. GTEx is managed in part by NHGRI.

2011 — NHGRI's new strategic plan, Charting a course for genomic medicine, from base pairs to bedside, for the future of human genome research is published in the February 10, 2011, issue of Nature.

2011 — A research team from the NIH Undiagnosed Diseases Program, which is co-led by NHGRI, reports in the New England Journal of Medicine the first genetic finding of a rare, adult-onset vascular disorder associated with progressive and painful arterial calcification.

2011 — The Partnership for Public Service selects NHGRI Clinical Director William A. Gahl, M.D., Ph.D., to receive its Science and Environmental Medal (one of nine annual Service to America Awards, or Sammies).

2011 — P. Paul Liu, M.D., Ph.D., a world expert in the onset, development and progression of leukemia, is named NHGRI's deputy scientific director.

2011 — Mark S. Guyer, Ph.D., is named NHGRI deputy director.

2011 — NHGRI announces funding for its five Clinical Sequencing Exploratory Research projects aimed at studying ways that healthcare professionals can use genome sequencing information in the clinic.

2012 — For the first time, researchers in the NIH Human Microbiome Project (HMP) Consortium – including NHGRI investigators — map the normal microbial make-up of healthy humans. They report their findings in a series of coordinated papers in Nature and other journals.

2012 — ENCODE researchers produce a more dynamic picture of the human genome that gives the first holistic view of how the human genome actually does its job. The findings are reported in two papers appearing in Nature.

2012 — NHGRI reorganizes the institute's Extramural Research Program into four new divisions and promotes to division status the office overseeing policy, communications, and education, and the office overseeing administration and management. The divisions and their inaugural directors include: Division of Genome Sciences, Jeffery Schloss, Ph.D.; Division of Genomic Medicine, Teri Manolio, M.D., Ph.D.; Division of Extramural Operations, Bettie Graham, Ph.D.; Division of Genomics and Society, (acting director) Mark Guyer, Ph.D.; Division of policy, communications, and education, Laura Lyman Rodriguez, Ph.D.; and Division of Management, Janis Mullaney, M.B.A.

2013 — A special symposium, The Genomics Landscape: A Decade After the Human Genome Project, marks the 10th anniversary of the completion of the Human Genome Project.

2013 — The Smithsonian Institution in Washington, D.C. opens a high-tech, high-intensity exhibition Genome: Unlocking Life's Code to celebrate the 10th anniversary of researchers producing the first complete human genome sequence. The exhibition is a collaboration between the Smithsonian Institution’s National Museum of Natural History and NHGRI. The exhibition will travel across North America following its time at the Smithsonian.

2013 — NIH awards the initial four grants for NHGRI’s Implementing Genomics in Practice (IGNITE) focused on developing new approaches to incorporating genomic information into patient care.

2013 — In a long-running legal case over a patent held by Myriad Genetics on a gene linked to breast cancer, the U.S. Supreme Court rules that isolated but otherwise unmodified DNA cannot be the subject of a patent.

2013 — NHGRI and the Eunice Kennedy Shriver National Institute of Child Health and Human Development announce awards for pilot projects to explore the use of genomic sequencing in newborn healthcare.

2013 — A team of scientists from NHGRI and the NIH Clinical Center receives a Service to America Medal for their efforts to protect patients from infections with drug-resistant bacteria.

2013 — NHGRI selects Lawrence C. Brody, Ph.D., to be the first director of the Division of Genomics and Society, established through the October 2012 reorganization.

2014 — NHGRI celebrates the 10th anniversary of the Social and Behavioral Research Branch, which it launched as a branch of the Division of Intramural Research in December 2003.

2014 — NHGRI Scientific Director Daniel Kastner, M.D., Ph.D., implements a reorganization of NHGRI's 45 intramural investigators and associated research programs into nine branches.

2014 — NHGRI Deputy Director Mark Guyer, who played a critical role in the Human Genome Project and countless other genomics programs, retires from federal service.

2014 — NIH issues the NIH Genomic Data Sharing policy to promote data sharing as a way to speed the translation of data into knowledge, products and procedures that improve health while protecting the privacy of research participants. The final policy will be effective for all NIH-supported research beginning in January 2015.

2014 — The first Clinical Center Genomics Opportunity awards of exome data goes to 10 intramural investigators for research at the NIH Clinical Center.

2014 — NIH announces the two-site DNA Sequencing Core Undiagnosed Diseases Network, awarded to Baylor College of Medicine, Houston, and the Medical College of Wisconsin, Milwaukee.

2014 — Ellen Rolfes, M.A., is appointed the NHGRI executive officer and director of the NHGRI Division of Management.

Biographical Sketch of NHGRI Director, Eric D. Green, M.D., Ph.D.

Eric D. Green, M.D., Ph.D., is the director of the National Human Genome Research Institute (NHGRI) at the National Institutes of Health (NIH), a position he has held since late 2009. Previously, he served as the NHGRI scientific director (2002-2009), chief of the NHGRI Genome Technology Branch (1996-2009), and director of the NIH Intramural Sequencing Center (1997-2009).

Dr. Green received his B.S. degree in bacteriology from the University of Wisconsin-Madison in 1981, and his M.D. and Ph.D. from Washington University, St. Louis, in 1987. During residency training in clinical pathology (laboratory medicine), he worked in the laboratory of Dr. Maynard Olson. In 1992, he was appointed assistant professor of pathology and genetics and co-investigator in the Human Genome Center at Washington University. In 1994, he joined the newly established Intramural Research Program of the National Center for Human Genome Research, later renamed the National Human Genome Research Institute.

Honors given to Dr. Green include a Helen Hay Whitney Postdoctoral Research Fellowship (1989-1990), a Lucille P. Markey Scholar Award in Biomedical Science (1990-1994), induction into the American Society for Clinical Investigation (2002), an Alumni Achievement Award from Washington University School of Medicine (2005), induction into the Association of American Physicians (2007), a Distinguished Alumni Award from Washington University (2010), the Cotlove Lectureship Award from the Academy of Clinical Laboratory Physicians and Scientists (2011), a Ladue Horton Watkins High School Distinguished Alumni Award (2012), and the Wallace H. Coulter Lectureship Award from the American Association for Clinical Chemistry (2012). He is a founding editor of the journal Genome Research (1995-present) and a series editor for Genome Analysis: A Laboratory Manual (1994-1998), both published by Cold Spring Harbor Laboratory Press. He is also co-editor of the Annual Review of Genomics and Human Genetics (since 2005). Dr. Green has authored or co-authored over 340 scientific publications.

While directing an independent research program for almost two decades, Dr. Green was at the forefront of efforts to map, sequence, and understand eukaryotic genomes. (A eukaryote is any organism whose cells contain a nucleus and other organelles enclosed within membranes.) His work included significant involvement in the Human Genome Project. These efforts eventually blossomed into a highly productive program in comparative genomics that provided important insights about genome structure, function and evolution. His laboratory also identified and characterized several human disease genes, including those implicated in certain forms of hereditary deafness, vascular disease and inherited peripheral neuropathy.

As director of NHGRI, Dr. Green is responsible for providing overall leadership of the institute's research portfolio and other initiatives. In 2011, he led NHGRI to completion of a strategic planning process that yielded a new vision for the future of genomics research, entitled Charting a course for genomic medicine from base pairs to bedside (Nature, 470:204-213, 2011). Since that time, he has led the institute in broadening its research mission; this has included designing and launching a number of major programs to accelerate the application of genomics to medical care. With the rapidly expanding scope of genomics, his leadership efforts have also involved significant coordination with multiple components of the NIH, as well as other agencies, and organizations.

Beyond NHGRI-specific programs, Dr. Green has also played an instrumental leadership role in the development of a number of high-profile efforts relevant to genomics, including the Smithsonian-NHGRI exhibition Genome: Unlocking Life's Code, the NIH Big Data to Knowledge (BD2K) program, the NIH Genomic Data Sharing Policy, and the U.S. Precision Medicine Initiative.

NHGRI Directors

Name In Office from To
James D. Watson 1989 April 1992
Michael Gottesman (Acting) April 1992 April 1993
Francis S. Collins April 1993 August 2008
Alan E. Guttmacher (Acting) August 2008 December 2009
Eric D. Green December 2009 Present

Major Programs

Office of the Director

The Office of the Director provides overall leadership for NHGRI. It sets policies, develops scientific, fiscal and management strategies, assists in governing the ethical behavior of its employees, and coordinates genomic research for NIH with other federal, private and international programs.

Extramural Research Program

NHGRI's Extramural Research Program (ERP) helps provide intellectual vision to the field of genomics. It also manages the meetings of NHGRI's National Advisory Council for Human Genome Research. In consultation with the broader genomics community, the ERP supports grants for research and training and career development at sites across the country.

The ERP is composed of four divisions:

  • The Division of Genome Sciences oversees basic genomic research and technology development, as well as major activities such as large-scale genome sequencing. It plans, directs, and facilitates multi-disciplinary research to understand the structure and function of genomes in health and disease. The division develops and funds research projects, and supports research training grants, research center grants, and contracts.
  • The Division of Genomic Medicine leads the institute's efforts to move genomic technologies and approaches into clinical applications and care. It develops and supports research to identify and advance approaches for the use of genomic data to improve diagnosis, treatment, and prevention of disease through grants, training, and contracts.
  • The Division of Genomics and Society carries out research related to the many societal issues relevant to genomics research, and includes the institute's Ethical, Legal and Social Implications (ELSI) program.
  • The Division of Extramural Operations manages ERP’s operational aspects, including conducting the review of grant applications and grants management.

Division of Intramural Research

The Division of Intramural Research (DIR) at the NHGRI plans and conducts a broad range of laboratory and clinical research aimed at a greater understanding of human genetic disease. DIR acts as a focal point at the NIH for genome research and maintains core facilities that serve as a resource for the entire NIH intramural research community. It evaluates research efforts and establishes intramural program priorities; allocates funds, space, and personnel ceilings to ensure maximum use of available resources; and integrates new research activities into the program structure.

DIR also collaborates with other NIH institutes, centers, and external research institutions; maintains an awareness of national and international research efforts in relevant program areas; and advises the director and staff on areas of science and research programs of interest to NHGRI.

NHGRI investigators, along with their collaborators at other NIH institutes and research institutions, have embarked on a number of high-risk efforts to unearth clues about the complex genetic pathways involved in human diseases. These efforts have used genomic sequence data from humans and other species to pinpoint hundreds of potential disease genes, including those implicated in cancer, diabetes, premature aging, hereditary deafness, various neurological, developmental, metabolic, and immunological disorders, and others. These studies have brought together NHGRI basic scientists and clinicians in collaborations aimed at developing better approaches for detecting, diagnosing and managing these often debilitating genetic disorders.

Division of Policy, Communications, and Education

The Division of Policy, Communications, and Education (DPCE) promotes the integration and use of genomic knowledge to advance human health and society. It engages broad communities of stakeholders in the institute's activities and promotes dialogue and awareness of the potential implications of the application of this knowledge within society. Stakeholder communities include: the general public, advocacy organizations, news media, non-profit organizations, professional societies, academic institutions, policy makers, educators, students, healthcare professionals, researchers, Congress, HHS, NIH, and NHGRI advisors. To achieve its aims, the division collaborates closely with the research divisions within NHGRI, as well as with other partners across NIH.

Division of Management

The Division of Management plans and directs administrative management functions within NHGRI, including administrative management, management analysis, and evaluation, financial management, information technology, and human resources. The NHGRI Ethics Office is also within the division.

This page last reviewed on October 14, 2015