NIH... Turning Discovery Into Health

OUR KNOWLEDGE

NIH plays a key role in the expansion of biomedical knowledge. NIH-funded research leads to tens of thousands of new scientific findings every year. These fundamental advances and technological developments expand our understanding of health and living systems, and form the building blocks required for translational and clinical advances to occur. NIH also fosters the generation of new knowledge within the scientific community by supporting training within the research workforce.

The following represent some of the key ways NIH contributes to advancing our knowledge:

Supporting and Training World-class Researchers

- **95% of the NIH budget** goes directly to research awards, programs, and centers; training programs; and research and development contracts.¹

- NIH funds scientists across the country and even across the globe. Each year, NIH awards more than **57,000 research and training grants**. These support:
 - approximately **300,000 researchers**
 - at more than **2,500 universities** and organizations
 - in every state.²

- NIH directly employs scientists in its intramural program. **12% of the NIH budget funds 1,200 Principal Investigators and more than 4,000 Postdoctoral Fellows** working at NIH laboratories in Maryland, North Carolina, and Montana.³

- NIH’s researchers are leaders in their fields.
 - **148 NIH-supported researchers**, including **21 intramural researchers**, have been awarded **Nobel Prizes**.
 - 211 NIH-supported researchers, including **31 intramural researchers**, have received **Lasker Awards**, which recognize researchers and clinicians for contributions to medicine.

- NIH supports the next generation of researchers. In 2015, NIH provided support for **more than 9,000 pre-doctoral students** and **almost 5,800 post-doctoral fellows**.⁴

Building a Knowledge Base for All Scientists

- NIH grantees publish their research findings in scientific journals, which are a major avenue for how scientists share knowledge.
 - In 2015 alone, over 93,000 articles acknowledged NIH grant support.

March 2016
Each R01 grant, NIH’s most common type of research project grant, leads to an average of 7.36 published research articles. Those articles go on to be referred to by other scientists; the publications from a single grant accumulate an average of almost 300 citations in the academic literature.

NIH supports a repository of research findings via the National Library of Medicine (NLM).

- NLM’s PubMed/MEDLINE is now the most frequently used scientific and medical database in the world.
- This database had more than 700 million visits in 2014 by researchers, medical practitioners, and the general public, who accessed more than 25 million available journal citations.

NIH grants lead to novel inventions and patents.

- From 2000 to 2013, NIH-funded researchers produced 20,441 unique patents.
- NIH research funding directly yields approximately 6 new patents for every $100 million of grant and contract funding.
- Each year’s new round of funding can be expected to generate at least 100 to 120 new inventions.

NIH investment also spurs private-sector patents, because the biotechnology and pharmaceutical industries build on knowledge generated by NIH funding.

- Every $10 million increase in NIH funding generates 3.26 additional private sector patents.
- That translates to one private-sector patent for every two NIH grants.

Harnessing New Knowledge for Biomedical Advances

- Knowledge from NIH-funded research spreads to other scientific areas. More than half of private sector biomedical patents are in a different disease area from the NIH grants they cite.
- NIH intramural researchers revolutionized understanding of how nerve cells communicate, laying a foundation for the development of many targeted medications for depression and anxiety and leading to a Nobel Prize in 1970.
- In the 1960s, NIH-supported research on the immune system led to the discovery and characterization of the human leukocyte antigen (HLA) system. Today, these genes are used to match donors to hosts for organ transplantation, and minimize rejection in the host.
- The NIH Clinical Center was the first to adapt an electronic medical record to collect data from an outpatient clinical trial in 1985. The Clinical Center continues to push the envelope for improvements and innovations in how research is done.
NIH-funded research is helping to personalize treatments for back pain by identifying when surgery would be beneficial. NIH grantees are using this knowledge to create new tools for making treatment decisions, including a calculator that can predict whether a patient is a good candidate for surgery.

Gleevec®, developed in part with NIH support, was the first cancer drug approved by the FDA that directly targeted a signaling molecule inside the cell, and launched a trend of developing targeted molecular medicines based on a deep understanding of the genes and molecules that cause disease.

The research used to create the Haemophilus influenzae B vaccine has been applied to create several vaccines against other disease-causing bacteria, such as pneumococci, meningococci, Salmonella typhi, group B streptococci, and E coli, and stimulated new strategies for developing effective vaccines for infants.

Spotlight: Understanding the Basics of Alzheimer’s Disease

- Alzheimer’s disease is an irreversible brain disorder that slowly destroys memory and thinking skills, and eventually the ability to carry out the simplest tasks. It is the most common cause of dementia among older adults.
- As recently as 30 years ago, very little was known about Alzheimer’s disease.
- Research supported by NIH and other organizations has greatly expanded knowledge and understanding of brain function, risk factors, treatment, and prevention.
 - NIH-supported studies have used images of the brain to uncover dramatic insights into how the disease starts. Because of that work, new treatments can now be tested at the earliest stages of disease, ideally even before symptoms have appeared.
 - More than 90 drugs are in clinical trials for Alzheimer’s disease, and many more are in the pipeline.
- The Accelerating Medicines Partnership, an NIH-led public-private partnership to transform and accelerate drug development, launched a new Alzheimer’s Big Data portal for use by the research community.
- With NIH’s support, many scientists and physicians are now working together to identify and understand the genetic, biological, and environmental factors that, over many years, cause Alzheimer’s. This effort is bringing us closer to better treatment for and prevention of this devastating disease.
- The NIH’s National Institute on Aging provides much more information on current efforts to combat Alzheimer’s disease.
Spotlight: Taking on Chronic Obstructive Pulmonary Disease (COPD)

- COPD is a progressive disease that makes it **hard to breathe**. “Progressive” means the disease gets worse over time. COPD is the third leading cause of death in the United States and a major cause of disability.\(^2\)
- COPD includes two main conditions, emphysema and chronic bronchitis. Most people with COPD have both.
- **NIH-funded studies are investigating** questions such as:
 - What genes contribute to COPD
 - Who is susceptible to COPD
 - How to identify the disease at early stages
 - Understanding subtypes of COPD
 - How COPD progresses

NIH funding is leading the way to new treatments: Large studies are already **testing several potential treatments** in people who have COPD, and new research is opening the door to ways to tailor treatments to stop the disease.

The NIH’s National Heart, Lung, and Blood Institute provides much **more information** on current efforts to address COPD.

5 Supplementary Material, Danielle Li and Leila Agha. “Big names or big ideas: DO peer-review panels select the best science proposals?” Science 24 April 2015: Vol. 348 no. 6233 pp. 434-438 http://www.sciencemag.org/content/suppl/2015/04/22/348.6233.434.DC1/Li-SM.pdf
14 http://caligari.dartmouth.edu/SpinalOutcomes
17 A Decade of Innovation in Rare Diseases. PhRMA 2015. [http://www.phrma.org/sites/default/files/pdf/PhRMA-Decade-of-Innovation-Rare-Diseases.pdf?_hstc=46830328.81a11c0b4f136a2de8e187a6149732a0.1](http://www.phrma.org/sites/default/files/pdf/PhRMA-Decade-of-Innovation-Rare-Diseases.pdf?_hstc=46830328.81a11c0b4f136a2de8e187a6149732a0)

18 Robbins, JAMA, 1996, Lasker Foundation page, and NICHD Press Release
