RADx Underserved Populations (RADx-UP) Return to School August Workshop

August 9, 2021
Agenda

<table>
<thead>
<tr>
<th>Topic</th>
<th>Speaker</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welcome & Introductions</td>
<td>Dr. Alison Cernich</td>
<td>1:30pm</td>
</tr>
<tr>
<td>Overview of RADx-UP Initiative</td>
<td>Dr. Eliseo J. Pérez-Stable</td>
<td>1:35 pm</td>
</tr>
<tr>
<td>Overview of the Return to School Initiative</td>
<td>Dr. Alison Cernich</td>
<td>1:40 pm</td>
</tr>
<tr>
<td>Phase II Overview of Projects</td>
<td>Dr. Sonia Lee</td>
<td>1:45 pm</td>
</tr>
<tr>
<td>COVID-19 and Children</td>
<td>Dr. Shamez Ladhani</td>
<td>1:50 pm</td>
</tr>
<tr>
<td>HHS Partner Programs</td>
<td>Angelica O’Conner (CDC)</td>
<td>2:15 pm</td>
</tr>
<tr>
<td></td>
<td>Dr. Matthew Humbard (HHS)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dr. Joseph Miller (HHS)</td>
<td></td>
</tr>
<tr>
<td>RADx-UP Coordination and Data Collection</td>
<td>Dr. Michael Cohen-Wolkowicz</td>
<td>2:45</td>
</tr>
<tr>
<td>Center (CDCC)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Break</td>
<td>All</td>
<td>3:00</td>
</tr>
<tr>
<td>Team Presentations</td>
<td>Dr. Chris Lindsey</td>
<td>3:15 (15 minutes per team)</td>
</tr>
<tr>
<td>Closing Remarks</td>
<td>Dr. Alison Cernich</td>
<td>5:15</td>
</tr>
</tbody>
</table>
Eliseo J. Pérez-Stable, M.D.

Director, National Institute on Minority Health and Health Disparities (NIMHD)
Rapid Acceleration of Diagnostics (RADx) Initiative

RADx Tech – $908M*
Highly competitive, rapid three-phase challenge to identify the best candidates for at-home or point-of-care tests for COVID-19

RADx Underserved Populations (RADx-UP) – $533M
Interlinked community-engaged research projects focused on implementation strategies to enable and enhance testing of COVID-19 in vulnerable populations

RADx Radical (RADx-rad) – $187M
Develop and advance novel, non-traditional approaches or new applications of existing approaches for testing

RADx Advanced Testing Program (RADx-ATP) – $192M
Rapid scale-up of advanced technologies to increase rapidity and enhance and validate throughput — create ultra-high throughput laboratories and “mega labs”

Data Management Support – $70M
Build an infrastructure for and support coordination of the various data management needs of many of the COVID-19 efforts

At-Home Diagnostic Testing – $20M
Evaluate the effectiveness of existing diagnostic technologies and platforms in at-home environments

* Includes $185M in BARDA funds for development of RADx tests (funds were not transferred to NIH)
RADx-Underserved Populations (RADx-UP)

Overarching Goals

- Enhance COVID-19 testing among *underserved and vulnerable populations* across the US
- Develop/create a *consortium of community-engaged research projects* designed to rapidly implement testing interventions
- **Strengthen the available data** on disparities in infection rates, disease progression and outcomes, and **identify strategies to reduce these disparities** in COVID-19 diagnostics

September – November 2020

Phase I

- Build infrastructure
- Rapidly implement testing, other capabilities

2021

Phase II

- Integrate new advances
- Expand studies/populations

September – November 2020

Phase I

- Build infrastructure
- Rapidly implement testing, other capabilities

2021

Phase II

- Integrate new advances
- Expand studies/populations
RADx-UP Strategies

- **Expand capacity to test broadly** for SARS-CoV-2 in highly affected populations, including asymptomatic persons only with tests with FDA Emergency Use Authorization. These may include self-test and saliva-based methods.

- **Deploy surveys with Common data Elements** that will be applied across all RADx projects plus additional survey items that are defined for RADx-UP consortium.

- **Inform implementation of mitigation strategies** based on isolation, testing and contact tracing to complement mask wearing and physical distancing to limit community transmission and maximize implementation of vaccines.

- **Understand factors** that contribute to COVID-19 disparities and **implement interventions** to reduce these disparities.

- **Establish research and data infrastructure** that could facilitate data sharing and current and future research questions
RADx-UP Phase I Snapshot: 69 Funded Research Projects and Coordination and Data Collection Center

NOT-OD-20-121, NOT-OD-20-120, NOT-OD-20-119

Funded sites and research projects span a total of 31 states in addition to DC and Puerto Rico and include 55 institutions.

Projects include diverse health disparity population affected by COVID-19.

Populations with Health Disparities

- Hispanics/Latinos/as: 41
- Blacks/African Americans: 33
- Asian Americans: 25
- American Indians/Alaska Natives: 24
- Sexual and Gender Minorities: 19
- Socioeconomically disadvantaged...: 15
- Underserved Rural Populations: 5
- Native Hawaiians and other Pacific Islanders: 3
Alison Cernich Ph.D.
Deputy Director,
Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
RADx-UP Return to School Diagnostic Testing Approaches

Goal
Develop and test COVID-19 diagnostic testing approaches to safely return children and staff to the in-person school setting in underserved and vulnerable communities.

Mechanism
Other Transaction Authority to provide flexibility for changing circumstances and funding of non-traditional partners

Approach
- Focus on children and adolescents below the age eligible for vaccination via Emergency Use Authorization (age 12+) and all school personnel
- Advance methods to integrate testing in return to or maintenance of in-person instruction
- Identify effective, scalable, and sustainable testing implementation strategies

Budget
$50 million commitment from the OD congressional appropriation
Return to School Phase I
OTA-21-004

Program Information: ~$33M awarded in Phase I; 8 sites

- Focus on children and adolescents below the age eligible for vaccination via Emergency Use Authorization (age 16) and all school personnel
- Advance methods to integrate testing in return to or maintenance of in-person instruction
- Identify effective, scalable, and sustainable testing implementation strategies, including in-school testing, in community pediatric primary care clinics, childcare centers, preschool, and school settings serving primarily underserved or disadvantaged children and their families.

Overview

- **Awarded 8 projects** in April FY21
- **Strategies for school-based settings** to combine frequent testing with proven safety measures to reduce the spread of COVID-19
Return to School Phase II
OTA-21-007

Program Information: ~$23M awarded in Phase II; 8 sites

- Focus on children and adolescents below the age eligible for vaccination via Emergency Use Authorization (age 12) and all school personnel
- Advance methods to integrate testing in return to or maintenance of in-person instruction
- Identify effective, scalable, and sustainable testing implementation strategies, including in-school testing, in community pediatric primary care clinics, childcare centers, preschool, and school settings serving primarily underserved or disadvantaged children and their families.

Overview

- **Awarded 8 projects** in June and July 2021
- **Strategies for school-based settings** to combine frequent testing with proven safety measures to reduce the spread of COVID-19
Overview of Phase II Projects

Sonia Lee Ph.D.
Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
Applications Awarded during Phase II

<table>
<thead>
<tr>
<th>PI</th>
<th>INSTITUTION</th>
<th>Project Title</th>
<th>GEOGRAPHIC LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inkelas</td>
<td>University of California, Los Angeles</td>
<td>Impact of COVID-19 testing and mitigation on equitable return-to-school in the second largest US school district</td>
<td>Los Angeles, California</td>
</tr>
<tr>
<td>Lee</td>
<td>Arizona State University-Tempe Campus</td>
<td>Back to ECE Safely with SAGE: Reducing COVID-19 Transmission in Hispanic and Low-income Preschoolers</td>
<td>Phoenix, Arizona</td>
</tr>
<tr>
<td>Okihiro</td>
<td>University of Hawaii at Manoa</td>
<td>Empowering schools as community assets to mitigate the adverse impacts of COVID-19</td>
<td>Hawaiian Islands</td>
</tr>
<tr>
<td>Gwynn</td>
<td>University of Miami School of Medicine</td>
<td>Maximizing Child Health and Learning Potential: How to Promote A School Culture of Safety in the era of COVID-19</td>
<td>Miami, Florida</td>
</tr>
<tr>
<td>McCulloh</td>
<td>University of Nebraska Medical Center</td>
<td>Mobile Health-Targeted SARS-CoV-2 Testing and Community Interventions to Maximize Migrant Children's School Attendance During the COVID-19 Pandemic</td>
<td>Buffalo, Hall and Adams Counties, Nebraska</td>
</tr>
<tr>
<td>Kiene</td>
<td>San Diego State University</td>
<td>Communities Fighting COVID!: Returning Our Kids Back to School Safely</td>
<td>South San Diego County, California</td>
</tr>
<tr>
<td>Wu</td>
<td>University of Utah</td>
<td>SCALE-UP Counts: A health information technology approach to increasing COVID-19 testing in elementary and middle schools serving disadvantaged communities</td>
<td>Granite School District, Utah</td>
</tr>
<tr>
<td>Johnson</td>
<td>Johns Hopkins University, University of Maryland, Morgan State University</td>
<td>Social, ethical, and behavioral factors in the return to school among underserved communities in Maryland</td>
<td>Baltimore, Maryland</td>
</tr>
</tbody>
</table>
Geographic Distribution of Awarded Projects

Legend

- **Phase I Awarded Site**
- **Phase II Awarded Site**
- **Phase I & II Awarded Sites**
- **Award Institution City**

Pre-decisional – Not for distribution
Health Disparity and Vulnerable Populations

Populations with Health Disparities

<table>
<thead>
<tr>
<th>Population</th>
<th>Phase I Awards</th>
<th>Phase II Awards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low SES</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Hispanics/Latinos/as</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Asian Americans</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Black/African Americans</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Underserved Rural Populations</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Native Hawaiian and other Pacific Islanders</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>American Indians/Alaska Natives</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Vulnerable Populations

<table>
<thead>
<tr>
<th>Population</th>
<th>Phase I Awards</th>
<th>Phase II Awards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Children and adolescents (6-17)</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Preschool Aged Children (3-5yrs)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Migrant Youth</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Homeless Youth</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Adolescents (13-17yrs)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Children with Medical Complexities</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Children (6-12yrs)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Children with IDD</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Note: There are projects working with multiple populations; the number of projects is not additive.
Educational Settings

![Bar chart showing the number of Phase I and Phase II awards across different educational settings.]

- **Public Schools**: 4 Phase I, 7 Phase II
- **Middle School**: 5 Phase I, 7 Phase II
- **Elementary**: 4 Phase I, 6 Phase II
- **High School**: 4 Phase I, 5 Phase II
- **Early Childhood Education Sites**: 1 Phase I, 1 Phase II
- **Tribal Schools**: 1 Phase I
- **Special Education**: 2 Phase I
- **Charter Schools**: 1 Phase I

Note: There are projects working with multiple populations; the number of projects is not additive.
COVID-19 & Children

What have we learnt so far?

Dr Shamez Ladhani
Paediatric Infectious Diseases Consultant
Email: shamez.Ladhani@phe.gov.uk
Twitter: @shamezladhani
Impact of School Closures on children

- Educational development
- Emotional development
- Social development
- Physical activity
- School meals
- Child protection & social services
- School vaccinations
Risk of SARS-CoV-2 Infection

Children vs Adults
Children as likely to be infected as adults
Antibody Seroprevalence in a New York City Hospital

Figure 1. Severe Acute Respiratory Syndrome Coronavirus 2 Antibody Test Frequencies and Positivity Rates from April 9 to August 31, 2020

A Number of tests

- Positive
- Negative

B Positive rate

Antibody Seroprevalence in a New York City Hospital

- Antibody levels in children decline with age and then increase in adults.
Antibody Rates

- IgG antibody titre
- RBD antibody titre

Neutralising antibody
- Antibody avidity
sKIDs
COVID-19 Surveillance in School Kids

192 Primary Schools Contacted

138 Primary Schools recruited
• Weekly Swabs: 89
• Bloods & Swabs: 49

Participants recruited:
>12,000 staff & students
Infection rates in primary and secondary schools

• Early studies showed lower infection rates in children vs adults:
 • Children less likely to be exposed than adults
 • Symptoms-based testing
 • PCR-testing

• More recent antibody studies show similar seropositivity in adults and children
Children retain higher antibodies than adults >6 months after SARS-CoV2 infection:

- Spike
- Nucleocapsid
- RBD
- N-terminal domain

Dowell et al. *unpublished data*
Antibodies against other coronaviruses

- Antibody positive children develop strong immune responses against beta-coronaviruses than adults
- No such effect seen with influenza virus controls
Cellular responses in seropositive children

- Elispot responses to Spike were 86% (32/37) of seropositive children vs 69% (45/64) of seropositive adults.

- Magnitude of cellular response against spike was 2.1-fold higher in children (p=0.0003).

Dowell et al. unpublished data
Cellular Responses in Seronegative Kids

- Robust cellular responses in 60% (12/20) seronegative children (3 different assays)
- Cellular responses variable but lower magnitude in 34% (10/29) of sero-negative adults
- Cellular responses in seronegative donors markedly spike-specific: ? pre-existing cross-reactive immunity
- 7/12 seronegative children & 6/10 seronegative adults with positive ELISpot also had increased HCoV antibodies: ? recent HCoV infection
- Alternatively, responses might represent cellular sensitisation without sero-conversion

Dowell et al. unpublished data
Antibody persistence in Seropositive Kids

- After 6 months, children have better antibody persistence than adults, possibly because they start with higher antibodies.
Trends in school-aged children
Weekly SARS-CoV-2 infection rates in children: Correlation with Community Rates (England)

Low Community Transmission Week

<table>
<thead>
<tr>
<th>Age group</th>
<th>Correlation coefficient</th>
<th>Coefficient of determination R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preschool cohort</td>
<td>0.5309</td>
<td>0.012</td>
</tr>
<tr>
<td>Primary school cohort</td>
<td>0.5481</td>
<td>0.009</td>
</tr>
<tr>
<td>Secondary school cohort</td>
<td>1.0333</td>
<td>0.9948</td>
</tr>
</tbody>
</table>

High Community Transmission Week

<table>
<thead>
<tr>
<th>Age group</th>
<th>Correlation coefficient</th>
<th>Coefficient of determination R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preschool cohort</td>
<td>0.1899</td>
<td>0.8612</td>
</tr>
<tr>
<td>Primary school cohort</td>
<td>0.2637</td>
<td>0.6991</td>
</tr>
<tr>
<td>Secondary school cohort</td>
<td>0.7228</td>
<td>0.9774</td>
</tr>
</tbody>
</table>
Schools Reopening during national lockdown (March 2021)
Schools Reopening (March 08-31, 2021)
Figure 39: Weekly hospital admission rate by age group for new (a) COVID-19 positive cases and (b) influenza reported through SARI Watch.
Figure 44: Weekly ICU/HDU admission rate by age group for new (a) COVID-19 positive cases and (b) influenza reported through SARI Watch

(a)
Schools Reopening 2: 19 April 19 – 08 May, 2021

Weekly incidence of laboratory confirmed COVID-19 cases per 100,000 population in nursery/preschool, primary school, secondary school and college/university age cohorts.
Vaccinating adults protects children, Israeli study

Infection rates in children who continued to attend school with daily LFD testing were similar compared to those who were sent home to self-isolate (<2%).

- Not powered to detect improvement in school attendance rates but logical?
Secondary attack rates in primary and secondary school bubbles

Secondary attack rate in students:
* 10.0% (6/60) primary
* 3.9% (4/102) secondary

Secondary attack rate in staff:
* 6.3% (1/16) primary
* 0% (0/1) secondary

Household contacts of students:
* 6.6% (12/183) primary
* 3.5% (11/317) secondary

Household contacts of staff:
* 3.7% (1/27) primary
* 0% (0/1) secondary
Conclusions

- School closures have a wider impact on children than loss of education
- Children as likely as adults to be infected with SARS-CoV-2
- Children develop robust and persistent immunity against the virus
- Risk of infection in school is low for staff and students, and no higher than risk in the local community
- Risk of infection and outbreaks in schools correlates strongly with local community infection rates
- Active case finding: very low rates of in-school transmission in staff or students
- Vaccinating teachers and adults family member will allow children to safely attend school safely, without
- Early evidence from Israel: vaccinating adults protects children
- *Is there a need to vaccinate children against SARS-CoV-2*
Acknowledgements

SKIDs Investigators: Frances Baawuah, Joanne Beckmann, Ifeanyichukwu Okike, Shazaad Ahmad, Joanna Garstang, Andrew J Brent, Bernadette Brent

sKIDs Team: Felicity Aiano, Zahin Amin-Chowdhury, Louise Letley, Oliver Martin, Jessica Flood, Emily-Jane Picton, Samuel Jones, Anna Mensah, Paul Charter, Corinne Whillock, Deborah Cohen, Kim Taylor, Johanna Bosowski, Yves-Pearl Hurley, Cherstyn Hurley, Francine Stalham, Hiran Hirani, Alpa Shah

PHE Statisticians: Jemma Walker, Nick Andrews

PHE Immunisation and Countermeasures Division: Vanessa Saliba, Gayatri Amirthalingam, Jamie Lopez Bernal, Michael Lattimore, Kevin Brown, Mary Ramsay

PHE Virus Reference Department: Maria Zambon, John Poh, Shabnam Jamarani, Andrew Mumford, Neil Woodford, Steve Harbour

PHE Manchester: Ray Borrow, Ezra Linley

Birmingham: Paul Moss, Alexander Dowell
Girl with COVID-19 warrior sign
sKIDs
COVID-19 Surveillance in Primary School Kids
Girl getting a COVID serology test
Seroconversion in primary school staff and students

Students
- **Round 1:**
 - n=725
 - 156 (21.5%) of which tested only in round 1

- **Round 2:**
 - n=229
 - Negative: 99.6% (n=226)
 - Positive: 0.4% (n=1)

- **Round 3:**
 - n=82
 - Negative: 96.3% (n=79)
 - Positive: 3.7% (n=3)

Staff
- **Round 1:**
 - n=1,172
 - 230 (19.6%) of which tested only in round 1

- **Round 2:**
 - n=570
 - Negative: 99.8% (n=569)
 - Positive: 0.2% (n=1)

- **Round 3:**
 - n=175
 - Negative: 96.0% (n=168)
 - Positive: 4.0% (n=7)
sKIDSPLUS
COVID-19 Surveillance in Secondary School Students
sKIDsPLUS: COVID-19 surveillance in Secondary Schools

Seroconversion rates in staff and students
COVID-19 outbreaks in Educational Settings after full reopening of schools
(September – October 2020)
Outbreaks in Educational Settings
Outbreaks in Educational Settings

• Full reopening of all preschool, primary school and secondary school years in September 2020

• Outbreak investigation during first half-term (31 August - 18 October 2020)

• 969 primary (n=450) & secondary school outbreaks (n=519) reported to PHE → 3% of primary schools and 15% of secondary schools in England.

• 369 schools contacted in November 2020 → 190 geographically-representative schools completed questionnaire; 2,425 cases reported.
Size of outbreaks

<table>
<thead>
<tr>
<th>School Type</th>
<th>Primary n (% of cases in the setting)</th>
<th>Secondary n (% of cases in the setting)</th>
<th>Combined (% of cases in the setting)</th>
<th>All settings n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student cases</td>
<td>328 (41%)</td>
<td>1105 (73%)</td>
<td>66 (59%)</td>
<td>1499 (62%)</td>
</tr>
<tr>
<td>Staff cases</td>
<td>471 (59%)</td>
<td>410 (27%)</td>
<td>45 (41%)</td>
<td>926 (38%)</td>
</tr>
<tr>
<td>Total cases</td>
<td>799 (33%)</td>
<td>1515 (62%)</td>
<td>111 (5%)</td>
<td>2425 (100%)</td>
</tr>
<tr>
<td>Number of outbreaks</td>
<td>100</td>
<td>79</td>
<td>11</td>
<td>190</td>
</tr>
<tr>
<td>Median, days (IQR)</td>
<td>6 (4-10)</td>
<td>15 (8.5-27)</td>
<td>6 (4.5-15.5)</td>
<td>9 (5-16)</td>
</tr>
<tr>
<td>Interquartile range</td>
<td>6</td>
<td>18.5</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Mode number of cases</td>
<td>3</td>
<td>6</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Range per outbreak</td>
<td>2-35</td>
<td>2-100</td>
<td>2-26</td>
<td>2-100</td>
</tr>
</tbody>
</table>
Attack Rates in Students and Staff

<table>
<thead>
<tr>
<th>School Type</th>
<th>Primary (100 schools)</th>
<th>Secondary (79 schools)</th>
<th>Combined (11 schools)</th>
<th>All schools (190 schools)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total student cases</td>
<td>328</td>
<td>1105</td>
<td>66</td>
<td>1499</td>
</tr>
<tr>
<td>Total students</td>
<td>30,927</td>
<td>91,919</td>
<td>8,551</td>
<td>139,497</td>
</tr>
<tr>
<td>Student attack rate, % (95% CI)</td>
<td>0.84% (0.75-0.94%)</td>
<td>1.20 (1.13-1.28%)</td>
<td>0.77% (0.60-0.99%)</td>
<td>1.08% (1.02-1.13%)</td>
</tr>
<tr>
<td>Total staff cases</td>
<td>471</td>
<td>410</td>
<td>45</td>
<td>926</td>
</tr>
<tr>
<td>Total staff</td>
<td>5852</td>
<td>11510</td>
<td>1721</td>
<td>19083</td>
</tr>
<tr>
<td>Staff attack rate, % (95% CI)</td>
<td>8.05% (7.37-8.78%)</td>
<td>3.56% (3.24-3.92%)</td>
<td>2.62% (1.94-3.51%)</td>
<td>4.85% (4.55-5.17%)</td>
</tr>
<tr>
<td>Teaching staff cases</td>
<td>378</td>
<td>284</td>
<td>31</td>
<td>637</td>
</tr>
<tr>
<td>Total teaching staff</td>
<td>3852</td>
<td>7146</td>
<td>1039</td>
<td>12,037</td>
</tr>
<tr>
<td>Teaching staff attack rate, % (95% CI)</td>
<td>9.81% (8.90-10.82%)</td>
<td>3.97% (3.54-4.46%)</td>
<td>2.98% (2.07-4.26%)</td>
<td>5.76% (5.35-6.19%)</td>
</tr>
<tr>
<td>Non-teaching staff cases</td>
<td>93</td>
<td>126</td>
<td>14</td>
<td>233</td>
</tr>
<tr>
<td>Total non-teaching staff, % (95% CI)</td>
<td>2006</td>
<td>4364</td>
<td>682</td>
<td>7,046</td>
</tr>
<tr>
<td>Staff attack rate</td>
<td>4.65% (3.79-5.69%)</td>
<td>2.89% (2.42-3.44%)</td>
<td>2.05% (1.17-3.51%)</td>
<td>3.31% (2.91-3.76%)</td>
</tr>
<tr>
<td>Total cases</td>
<td>799</td>
<td>1515</td>
<td>111</td>
<td>2,425</td>
</tr>
<tr>
<td>Total population (staff & students)</td>
<td>44879</td>
<td>103429</td>
<td>10272</td>
<td>15,8580</td>
</tr>
<tr>
<td>Attack rate, % (95% CI)</td>
<td>1.78% (1.66-1.91%)</td>
<td>1.47% (1.39-1.54%)</td>
<td>1.08% (0.89-1.31%)</td>
<td>1.53% (1.47-1.59%)</td>
</tr>
</tbody>
</table>
Index Case in Outbreaks

<table>
<thead>
<tr>
<th>Index case in the outbreak</th>
<th>Primary</th>
<th>Secondary</th>
<th>Combined</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching staff</td>
<td>48 (48%)</td>
<td>25 (32%)</td>
<td>4 (36%)</td>
<td>77 (40.5%)</td>
</tr>
<tr>
<td>Student</td>
<td>35 (35%)</td>
<td>47 (59%)</td>
<td>5 (45%)</td>
<td>87 (45.8%)</td>
</tr>
<tr>
<td>Non-teaching staff</td>
<td>9 (9%)</td>
<td>6 (8%)</td>
<td>1 (9%)</td>
<td>16 (8%)</td>
</tr>
<tr>
<td>Another source</td>
<td>1 (1%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>1 (1%)</td>
</tr>
<tr>
<td>Not reported</td>
<td>7 (7%)</td>
<td>1 (1%)</td>
<td>1 (9%)</td>
<td>9 (5%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Groups affected by the outbreak</th>
<th>Primary</th>
<th>Secondary</th>
<th>Combined</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staff only</td>
<td>6 (6%)</td>
<td>1 (1%)</td>
<td>1 (9%)</td>
<td>8 (4%)</td>
</tr>
<tr>
<td>1 year group only</td>
<td>39 (39%)</td>
<td>5 (6%)</td>
<td>2 (18%)</td>
<td>46 (24%)</td>
</tr>
<tr>
<td>More than 1 year group</td>
<td>55 (55%)</td>
<td>73 (92%)</td>
<td>8 (73%)</td>
<td>136 (72%)</td>
</tr>
<tr>
<td>More than 3 year groups</td>
<td>13 (13%)</td>
<td>54 (68%)</td>
<td>5 (45%)</td>
<td>72 (38%)</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>79</td>
<td>11</td>
<td>190</td>
</tr>
</tbody>
</table>
Staff / Students affected

<table>
<thead>
<tr>
<th>Index Case</th>
<th>Group affected</th>
<th>Primary</th>
<th>Secondary</th>
<th>Combined</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching staff</td>
<td>Staff only</td>
<td>4/48 (08%)</td>
<td>0/25 (-)</td>
<td>1/4 (25%)</td>
<td>5/77 (06%)</td>
</tr>
<tr>
<td></td>
<td>Student only</td>
<td>0/48 (-%)</td>
<td>0/25 (-)</td>
<td>0/4 (-)</td>
<td>0/77 (-)</td>
</tr>
<tr>
<td></td>
<td>Both</td>
<td>44/48 (92%)</td>
<td>25/25 (100%)</td>
<td>3/4 (75%)</td>
<td>72/77 (94%)</td>
</tr>
<tr>
<td>Student</td>
<td>Staff only</td>
<td>0/35 (-)</td>
<td>1/47 (2%)</td>
<td>0/5 (-)</td>
<td>1/87 (1%)</td>
</tr>
<tr>
<td></td>
<td>Student only</td>
<td>10/35 (29%)</td>
<td>6/47 (13%)</td>
<td>0/5 (-)</td>
<td>28/87 (32%)</td>
</tr>
<tr>
<td></td>
<td>Both</td>
<td>25/35 (71%)</td>
<td>40/47 (85%)</td>
<td>5/5 (100%)</td>
<td>48/87 (55%)</td>
</tr>
<tr>
<td>Non-teaching staff</td>
<td>Staff only</td>
<td>2/9 (22%)</td>
<td>0/6 (-)</td>
<td>0/1 (-)</td>
<td>2/16 (13%)</td>
</tr>
<tr>
<td></td>
<td>Student only</td>
<td>0/9 (-)</td>
<td>0/6 (-)</td>
<td>0/1 (-)</td>
<td>0/16 (-)</td>
</tr>
<tr>
<td></td>
<td>Both</td>
<td>7/9 (78%)</td>
<td>6/6 (100%)</td>
<td>1/1 (100%)</td>
<td>14/16 (88%)</td>
</tr>
</tbody>
</table>
Serological studies in Educational Settings

<table>
<thead>
<tr>
<th>Study</th>
<th>Setting</th>
<th>Participants</th>
<th>Findings</th>
</tr>
</thead>
</table>
| Lachassinne, France (Jun-Jul 2020) 22 daycare centres | • 327 children, 197 staff, 164 controls | • 3.7% (1.3–6.8), children, 6.8% (3.2–11.5) staff, 5.0% adult controls – children most likely exposed to household adult with COVID-19 (43% vs 19; RR 7.1 [2.2–22.4].)
| Ladhani England (Jun-Dec 2020) 45 primary schools | • 5.6% (19/340; 3.4–8.6) children vs. 4.8% (36/745; 3.4–6.6) staff seroconverted | • Seropositivity not associated with school attendance during lockdown or staff contact with students in school |
| Ladhani England (Sep-Dec 2020) 18 secondary schools | • 2,209 participants: 1,189 (53.8%) students & 1,020 (46.2%) staff | • SARS-CoV-2 infection rates similar in staff & students, and national prevalence
• 8.3% (53/641) staff vs. 6.5% (35/542) students seroconverted (p=0.24). |
SARS-CoV-2 Transmission in Schools

<table>
<thead>
<tr>
<th>Location</th>
<th>Details</th>
</tr>
</thead>
</table>
| Buonsenso, Italy | 1,350 (1,059 students, 145 teachers, 146 others) had COVID-19
1,212/65,104 (1.8%) schools affected
>90% had only 1 case in school, only 1 high school had >10 cases
192 (15.8%) schools closed entirely, esp nursery/kindergartens |
| Larosa, Italy | SARS-CoV-2 transmission in 41 classes of 36 schools
Secondary attack rate was 3.2%, reaching 6.6% in middle/high schools.
More timely isolation and testing of classmates reduce transmission |
| Zimmerman, North Carolina, USA | 11 school districts, >90,000 students and staff attending school in-person for 9 weeks
773 community-acquired SARS-CoV-2 infections
Only 32 additional infections identified through contact tracing that were acquired in school |
| Falk, Wisconsin USA | 17 rural Wisconsin schools, 4,876 students & 654 staff (August 31–November 29, 2020)
Incidence (3,453/100,000) lower than in the county overall (5,466 per 100,000).
Of 191 cases in students/staff, only 7 (3.7%), all among students, linked to in-school spread |
| Varma, New York USA | COVID-19 prevalence in public schools similar or less than community rates (Oct-Dec 2020)
Of 36,423 school-based close contacts, only 191 (0.5%) subsequently tested positive
Likely index case was an adult for 78.0% of secondary cases. |
| RIVM, Netherlands | Just over half the cases in secondary school clusters were acquired outside school,
Mainly during intensive contact with friends or classmates in their free time
Most infections restricted to small groups of students without affecting teachers |
SIS
School Infection Survey
(PHE, ONS, LSHTM)

- 12,204 participants (5,114 staff; 7,089 pupils)
- 121 Primary (41) & Secondary (42) Schools
 - 7,751 both rounds (3,322 staff; 4,429 pupils)
SARS-CoV-2 antibodies in School Staff

12.63% of primary staff
12.27% of secondary staff
14.61% of primary staff
15.72% of secondary staff

Source: Office for National Statistics: COVID-19 Schools Infection Survey

Covid-19 Infection Survey, working age population same local authorities
- 12.51% (November)
- 18.22% (December)
Long COVID in Children
COVID effect on the body

- After symptomatic or asymptomatic infections
- After confirmed or suspected COVID-19
- Persistent
- Intermittent
- Relapsing
- New onset

Lopez-Leon et al. MedRxiv
20 January 2021: doi: https://doi.org/10.1101/2021.01.27.21250617
Over the four-week period ending 6 March 2021, an estimated 1.1 million people in private households in the UK were experiencing self reported long COVID.

“Would you describe yourself as having ‘long COVID’, that is, you are still experiencing symptoms more than 4 weeks after you first had COVID-19, that are not explained by something else?”

Reference: Prevalence of ongoing symptoms following coronavirus (COVID-19) infection in the UK - Office for National Statistics (ons.gov.uk)
Illness duration and symptom profiles

1,734 children with confirmed COVID-19

- Median illness duration: 6 days (vs. 3 days in test-negative children)
- Positive association between illness duration and increasing age (p<0.0001)
- 77 (4.4%) had illness ≥28 days (older > younger children; 5.1% vs. 3.1%; p=0.046)
- Commonest symptoms: fatigue (84%), headache (80%) & anosmia (80%);
- At 56 days, 1.8% had persistent symptoms vs. 0.9% of controls
PIMS-TS / MIS-C in Children
Hyperinflammatory syndrome, UK

Case curves for SARS-CoV-2 and PIMS/Kawasaki/TSS cases

Week of onset (PIMS/Kawasaki/TSS) / Week of sample date (SARS-CoV-2)

PIMS/KD/TSS cases
Laboratory confirmed SARS-CoV-2 cases
Latent Class analysis, PIMS cases
Supporting implementation of screening testing in K-12 schools

Angelica O’Connor, MPH
ELC Program Coordinator
Division of Preparedness and Emerging Infections
National Center for Emerging and Zoonotic Infectious Diseases

cdc.gov/coronavirus
National Capacity Building Cooperative Agreement

- **Mission**: To build the governmental public health system capacity for emerging infectious disease prevention, detection, response, and control.

- **ELC supports the nation**
 - State Health Departments = 50
 - Largest Local Health Departments = 6
 - Territories and affiliates = 8

- **Customer-service focus**

https://www.cdc.gov/ncezid/dpei/elc/elc-recipient-history.html
Federal COVID funding and impact on ELC budget

- Coronavirus Aid Relief and Economic Security Act (CARES Act)
- Paycheck Protection Program and Health Care Enhancement Act
- Coronavirus Preparedness and Response Supplemental Appropriations Act
- Coronavirus Response and Relief Supplemental Appropriations Act
- American Rescue Plan Act

$42 Billion

$200 Million
ELC Reopening Schools award

- $10 billion to 64 ELC recipients from American Rescue Act Plan of 2021
- Comprehensive screening testing for K-12 schools (public, charter, and private)
 - 2020-2021 School year
 - **Spring**: immediate implementation of pilot school screening testing where possible
 - **Summer**: summer school, camps and planning for Fall
 - 2021-2022 School year:
 - **Fall**: Widespread screening testing implemented in schools
 - **Summer**: Funding period ends 7/31/22
Technical Assistance: School Support Section and ELC

- One-on-one calls with jurisdictions
- Rockefeller STAT K-12 Calls
- Bi-weekly Community of Practice Calls
- Targeted regional and topical calls
- Communication toolkit in development
Initial K-12 Plans for screening testing

Testing Approaches
- BinaxNOW antigen test expansion
- Pooled specimen (class and lab)
- NAAT/PCR
- Saliva and home-based testing

Vendors
- Majority to use vendor(s)
- Turnkey solutions
- Menu of options
- ICATT
- Operation ET

School Coordination
- Centralized coordination
- Decentralized
Challenges

School Participation
- Schools overwhelmed by numerous priorities
- For schools that stayed open, uncertainty of the need for screening testing
- Lack of support from parents, community members, state/local government
- Continued concern about testing being painful for students

Trade-offs
- Example: Dropping distancing requirements and the need for close contacts to quarantine if schools achieve a certain percentage of participation in screening testing program
Feedback from recipients

Alternatives to full screening testing implementation

- Only providing screening testing at high-risk sports or events
- Testing for surveillance purposes
- Limiting screening testing to a particular subset of students (e.g., those living and going to school in a confinement setting for youths)

Common feedback and requests

- Diagnostic testing
- Ventilation upgrades
- Vaccination promotion
Integrating feedback: Updated *ELC Reopening Schools*

- Focus remains on screening testing as a critical layer of protection against the spread of COVID-19 in K-12 setting
- Scope broadened and/or explicitly allows for:
 - Diagnostic testing
 - Testing events at school that may include family and/or community members (e.g., athletic events)
 - PPE
 - Portable HEPA filtration units or fans
- Description of current plan for the Fall and how districts may scale based on community transmission levels

Next steps
For more information, contact CDC
1-800-CDC-INFO (232-4636)

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.
Operation Expanded Testing

HHS Testing and Diagnostics Work Group
Dr. Matthew Humbard | Operation E.T. Program Lead

AUGUST 2021
Testing and Diagnostics Working Group (TDWG) administers 2 testing programs focused on support of vulnerable and underserved groups

Focus for today

Testing Programs

| Operation Expanded Testing (Op ET): | Provides no-cost testing to K-8 schools and underserved congregate settings | Manages testing through regional "coordination hubs"
| Increasing Community Access to Testing (ICATT): | Provides no-cost testing to underserved populations | Operates in pharmacies, schools, surge & pop-up sites, hot spots, and priority surveillance locations |

Procurement & Distribution

Direct Procurement:	Purchases constrained (Binax) or novel (Ellume) supplies and distributes to target groups
Federal Supply Schedule (FSS):	Supports the addition of tests to the FSS
Supply Exchange:	Offers a forum for orgs. to ask for or offer up testing supplies
Strategic National Stockpile (SNS):	Builds and stores the national testing supply stockpile

Information Exchange

Industry Engagement:	Engages with MFRs and labs to assess testing landscape and monitor supply trajectory	
State Engagement:	Enable visibility across TDWG of state specific testing issues	Assists with SW border migration testing needs
Data Analytics & Informatics:	Creates automated diagnostic test reporting systems	Synthesizes federal and state data into cohesive analysis
OpET objective to expand COVID testing for schools, underserved populations and congregate settings via coordination hubs

Program highlights
- Operation E.T. is divided into 4 regions served by 3 coordination hubs, with USG oversight across the entire program
 - West - Perkin Elmer
 - Midwest - Battelle
 - Northeast - Eurofins
 - South - Eurofins
- Screening services provided at no-cost to schools and other qualifying sites (e.g., homeless shelters, women’s shelters, prisons, HBCUs, congregate settings with high SVIs etc.)
- Coordination hubs work with enrolled sites to create tailored testing plan
Coordination hubs connect testing laboratories with qualifying sites to rapidly establish COVID-19 screening services

1. Request testing services
2. Assign based on capacity
3. Collect and test samples
4. Labs with excess capacity
5. Schools and Local Gov’t for the underserved
6. State and local health organizations

1. Patient specific results from non-CLIA certified laboratory cannot be reported to individuals or health care providers, but population-level aggregate results may be reported to public health agencies.
Hub testing approaches vary by hub, but all will leverage PCR testing with <72h turnaround

<table>
<thead>
<tr>
<th>Test type</th>
<th>West</th>
<th>Midwest</th>
<th>Northeast/South</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCR, Antigen<sup>1</sup> Nasal</td>
<td>PCR, Antigen<sup>1</sup> Nasal, Saliva TBD</td>
<td>PCR, Antigen<sup>1</sup> Nasal</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pooling approach</th>
<th>West</th>
<th>Midwest</th>
<th>Northeast/South</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not pooled</td>
<td>5-10 samples</td>
<td>5-24 samples</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Turn around time targets</th>
<th>West</th>
<th>Midwest</th>
<th>Northeast/South</th>
</tr>
</thead>
<tbody>
<tr>
<td><48 hours for tests</td>
<td>24 hours (for neg. pools)</td>
<td>24 hours (for neg. pools)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>48 - 72 hours (for pos. pools)</td>
<td>30 - 48 hours (for pos. pools)</td>
<td></td>
</tr>
</tbody>
</table>

1. Antigen used for select populations only (e.g., screening of symptomatic participants to minimize positive pools, if common carrier shipments are not possible)
Examples of enrolled sites from various states

1. **Nevada**
 - Clark County Fire Dept
 - Boys and Girls Club
 - Nevada YMCA

2. **Hawaii**
 - 3 K-12 schools
 - Correctional facilities
 - Congregate settings

3. **Arkansas**
 - 26 prisons via AR Dept of Corrections

4. **Indiana**
 - 70+ schools
 - 6 shelters

5. **New York**
 - Buffalo School District

Anticipate greater number of school enrollments in upcoming weeks as more school decision makers return from summer recess.
Hubs project testing to increase rapidly once schools begin starting in August

Projected weekly tests by hub (in thousands)

Enrollment and testing statistics (as of 8/6)

994 Sites enrolled
4.1k Tests completed
For more information, please reach out to the appropriate program manager

MIDWEST
Battelle

Beverly Roberts (Program General Mgr)
robertsbd@battelle.org
Testedandprotected.org

SOUTH AND NORTHEAST
Eurofins

Sean Plotner (Program Manager)
Seanplotner@eurofinsUS.com
www.operationET.com

WEST
Perkin Elmer

John Hicks (Testing Program Leader)
John.hicks@perkinelmer.com

OPERATION ET
General Program Management

Matt Humbard (Program Manager)
Matthew.Humbard@fda.hhs.gov
Testing & Diagnostics Working Group:
Increasing Community Access to Testing

NIH RADx Return to School Workshop

AUGUST 9TH 2021
Agenda

Overview of ICATT
School testing initiatives
School testing feedback and evaluation
Future outlook for school testing
Overview of ICATT

School testing initiatives

School testing feedback and evaluation

Future outlook for school testing
Increasing Community Access to Testing (ICATT) has four primary initiatives

1. **Pharmacy partnerships**
 - ~15M tests
 - Offer no-cost testing to underserved and vulnerable populations at pharmacies in all 50 states, DC, and PR

2. **Surge site testing**
 - ~1M tests
 - Rapidly stand-up testing sites in hot spots and priority surveillance locations, in partnership with state and local governments

3. **Pop-up event testing**
 - ~2K tests
 - Offer no-cost testing for events anticipating high volume of testing

4. **School screening programs**
 - ~5K tests
 - Provide testing resources to safely reopen K-12 schools, comm. colleges, HBCUs & summer camps in underserved areas

Today’s Focus

- Transition to Op ET for Fall '21 Testing
Overview of ICATT

School testing initiatives

School testing feedback and evaluation

Future outlook for school testing
ICATT program in schools aims to safely re-open schools in underserved school districts by providing testing resources and operational support to jumpstart national school testing programs.
ICATT program in schools has supported the reopening of 150+ schools

Work with existing ICATT testing contractors to collect samples, transport and process tests, and provide follow-up testing options

Provide immediate school testing support to underserved school districts

Help states and school districts transition to longer-term solutions or national testing programs that meet school testing needs
Four criteria guidelines inform ICATT program school district selection

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 High Social Vulnerability</td>
<td>• Top 40% of the national Social Vulnerability Index (SVI) that identifies communities in need of support during a disaster</td>
</tr>
<tr>
<td>2 High Pandemic Vulnerability</td>
<td>• County burden follows a moderate-high Pandemic Vulnerability Index (PVI) with high infection, transmission and testing rates</td>
</tr>
<tr>
<td>3 Child Poverty</td>
<td>• Beneficiary of the "Families with Food Stamp/SNAP benefits" provided by the National Center for Education Statistics (NCES)</td>
</tr>
</tbody>
</table>
| **4** Immediate Need for Testing Support | • District requires support to **open and remain open safely**
 • District is prepared to implement school testing within **2-3 weeks** |
ICATT in Schools began testing in April '21 and will continue through Sep '21
Currently supporting testing in 13 states in districts ranging from 1k-40k students & staff

- **Week of April 19**: Testing began in first district (Sahuarita, AZ) and began collecting submissions for additional school districts.

- **Week of May 17**: Testing in progress or began in 4 school districts. ICATT beginning evaluations in active school districts.

- **Week of May 31**: Target for addl. 12 selected schools to begin testing (rolling). ICATT continuing evaluations in active school districts.

- **We are here**: ICATT continuing evaluations in active school districts.

- **Week of July 1**: Summer school testing to begin in 2 school districts. Schools paired with contractors; ICATT providing support.

- **End of Sept.**: Transition ICATT to ELC and Op ET testing programs. Provide assistance to underserved schools struggling with testing implementing.

1. Possible opportunity for ICATT extension to continue testing initiatives
Detail: ICATT supports 18 school districts with on-site summer school testing through pharmacy partners

Summer schools

<table>
<thead>
<tr>
<th>Pharmacy Partners</th>
<th>Assigned districts</th>
<th>Waitlisted districts</th>
<th># of schools (excl. waitlist)</th>
<th># of tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVS Health</td>
<td>3</td>
<td>-</td>
<td>18</td>
<td>740</td>
</tr>
<tr>
<td>eTrueNorth</td>
<td>5</td>
<td>1</td>
<td>54</td>
<td>3,512</td>
</tr>
<tr>
<td>Rite Aid</td>
<td>6</td>
<td>-</td>
<td>78</td>
<td>690</td>
</tr>
<tr>
<td>Walgreens</td>
<td>2</td>
<td>1</td>
<td>11</td>
<td>177</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td>2</td>
<td>161</td>
<td>5,119</td>
</tr>
</tbody>
</table>

1. Pending contractor selection or selecting self-administered exams (e.g., Ellume)

Status Update

- Districts continued spring testing into the summer term
- Testing began 7/28 in Harford, MD at a special needs school
- ICATT to understand fall testing plans and transition schools to Op ET
Agenda

Overview of ICATT

School testing initiatives

School testing feedback and evaluation

Future outlook for school testing
ICATT team collected learnings & best practices from school testing programs

1. Optimize testing process and impact on school openings
2. Improve expansion of ongoing ICATT school programs
3. Glean best practices to guide execution of Operation ET

School survey stakeholder groups include: pharmacy partners, district staff, school staff & parents/guardians
Recurring themes from Feedback on COVID-19 Testing in Schools validate initial objectives and can inform Operation ET or other future school testing programs

Schools struggle to generate testing demand and increase consent rates

Initial 2+ week time investment in planning is critical to successful school testing program

Early and ongoing communication with school staff is important to generate testing program support

District and school staff pleasantly surprised by quick results and self-swab testing process

Parents & guardians support school testing but are misinformed about program objectives

Source: Feedback on COVID-19 Testing in Schools (Qualtrics) Note: Survey completion is defined as both indicating background information and answering at least one evaluation content question – ICATT in Schools received 110 total submissions, but 26 did not complete background information and 12 did not complete at least one evaluation content question = 110-(26+12) = 72 survey responses
Overview of ICATT

School testing initiatives

School testing feedback and evaluation

► Future outlook for school testing
Recent uptick in testing demand calls for further school testing support

Increasing ICATT Testing: June & July ‘21

- Increased school testing projections for back-to-school in fall ‘21
 - School districts in AZ, CT, HI, MD, NJ, NY, OH, VA requesting additional ICATT support
- OTC and POC test sales rising across ICATT’s pharmacy partners
- HBCU’s and state universities request back-to-school support
- Federal and state testing mandates require regular testing

Source: Covid Responder 1. Projections based on WOW growth as ICATT testing is increasing significantly and expected to grow in coming weeks
Questions?
RADx-UP Coordination and Data Collection Center (CDCC)

August 2021
• **Communities** are at the center of our work.

• **Data sovereignty** protections and sharing with communities and participants are essential in building trust and being trustworthy.

• **Intentional support** of study teams is critical to streamline results and troubleshoot.

• **Broad dissemination** of program activities, data, and best practices are key.

• **Strategic partnerships** will augment community benefits from the program.

• **Impact** will be broad and will inform national guidance, strategy, and response to COVID-19.
CDCC Responsibilities

- Program administration
 - Communications, committees, policies, strategy

- Community engagement
 - Best practices, resources, working groups, community of practice, mini-grants, EITs

- COVID-19 testing technologies
 - Technical support, repository of emerging technologies, pilot grants

- Data and biostatistics
 - Data exchange, harmonization, dissemination, protection, linkages, stats
More on Community Engagement Support

- Disseminate/support best practices and resources for community engagement in underserved populations
- Translate the utility of new testing technologies to communities
- To date
 - 300+ participants at COVID-19 Equity Evidence Academy
 - 20+ best practices/guidance documents
 - 5 working groups
 - 12+ Community Collaboration Mini-grants (and 5 cycles to come)
 - 4+ channels for Community of Practice: Slack, newsletters, meetings, CCPH consults

Working Groups

- Child Health
- Engaging Hispanic/Latino/Latinx Populations
- Building Community Capacity and Impact
- Understanding Social Determinants of COVID-19 Testing and Vaccination
- Engaging Black/African Americans
More on CDCC COVID-19 Testing Support

• Supporting projects with the selection of testing technology
 – Right test is used for the right person, indication, goal, setting
 – FDA EUA
 – To date
 • 75+ testing plans reviewed
 • 15+ projects switched tests from non-FDA EUA to FDA EUA
 – 8+ Rapid pilot projects

• Supporting projects with securing testing supplies
 – Connecting projects/negotiating costs directly with partners, vendors, suppliers
 • >$850K in cost savings to projects
More on CDCC COVID-19 Testing Support

• Testing resources
 – The FDA lists of authorized assays
 – Testing Tips webpage for selection and use of FDA EUA assays
 – The May 2021 Project-wide Meeting focused on testing; find materials on myRADx-UPhome.

• Discussions with projects via EITs
More on CDCC COVID-19 Data and Biostatistics Support

- Supporting projects with project-level data collection questions
- Cross-consortium data collection and harmonization
 - NIH RADx-UP Common data elements (CDEs)
- Collecting different types of data
 - NIH RADx-UP CDEs, electronic health records, qualitative data
- Linkages with external datasets
 - Adds SDOH and increases impact
- Statistical consultations
What are the NIH RADx-UP Common Data Elements?

- Data items collected in the same format by all projects
- Developed by NIH and catalyzed by the CDCC
- RADx-UP (Phase I) projects contributed
 - Limited, messy, imperfect, and during a pandemic
 - 700+ → 60+
- Tiers
 - Tier 1 = required
 - Tier 2 = recommended
 - New NIH RADx-UP Tier 2 CDEs for pediatrics are in development
Why do we need the NIH RADx-UP Common Data Elements?

• Standardized data collection across community engaged projects

• Provides a path to understanding the nuances of health disparities between and within different communities

• Allows data linkages with external datasets (e.g. SDOH) to augment impact
 – Zip code, county
 – Address (census tract or census block)
 – Name and contact information for future re-contact

• Increases the impact of the RADx-UP program
How does it work?

• CDCC disseminated the NIH RADx-UP CDEs to projects (English and Spanish)
 – Also: data sharing language for the ICF and data use agreements

• CDCC created the codebook for the NIH RADx-UP CDEs (English and Spanish)
 – Ready to upload into databases (e.g., REDCap)

• CDCC provided information and guidance regarding NIH RADx-UP CDEs
 – Written, podcasts, meetings, videos (coming soon)

• Projects are collecting NIH RADx-UP CDEs and uploading data to CDCC

• CDCC will deposit data into the NIH RADx Data Hub
Examples of NIH RADx-UP Tier 1 CDE data
Examples of NIH RADx-UP Tier 1 CDE data
Summary

• The CDCC supports >100 projects in the RADx-UP program
• The CDCC is achieving its goals: CE, testing, and data collection
• The CDCC and projects are changing the paradigm of CE research
• Keeping communities at the center of what we do is key to our success
Thank you.

Please contact us with your questions and ideas:
RADx-UP-CDCC@duke.edu

radx-up.org
Team Presentations

Chris Lindsey Ph.D.
Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
Project SafeSchools

Re-opening schools serving Native children and adolescents SAFELY

Return to School August Meeting

PIs: Drs. Allison Barlow, Laura Hammitt, Emily E. Haroz

On behalf of our whole JHCAIH team and partners from the White Mountain Apache and Navajo Nation

This research was, in part, funded by the National Institutes of Health (NIH) Agreement No. 1 OT2 HD107543-01. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the NIH.
Significance

1. Native Americans face the highest COVID related health disparities of any racial or ethnic group.

2. Most schools serving Native American youth were closed until March or April of 2021.
 - Navajo Nation schools were closed to in-person learning for all of 2020-2021 academic year
 - Virtual learning particularly challenging
 - Opting into in-person learning has been variable
 - Most schools are re-opening for in-person learning for the 2021-2022 academic year

3. School attendance and attachment are protective for physical and mental health concerns.
Research Questions

1. What are the barriers and facilitators to school re-openings and COVID-19 testing from the perspective of multiple stakeholders involved in schools that serve Native American youth ages 4-16 years?

2. How acceptable and feasible are various COVID-19 testing strategies for schools? And what is their impact on in-person attendance rates, children’s learning, and quality of teaching from the perspective of families, teachers, administrators and staff?

3. What are the educational, social, emotional, physical and mental health impacts of returning to in-person learning for Native American youth ages 4-16 years?
Project Sites

• White Mountain Apache Tribe
 • Pilot project activities began in January 2021 with three schools
 • Expansion to all other schools

• Navajo Nation
 • Shiprock Area Schools
 • Tuba City Area Schools

~10,000 students & faculty
<90% Free or reduced lunch
Testing approaches

<table>
<thead>
<tr>
<th></th>
<th>Screening Tests</th>
<th>Surveillance Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rapid Antigen Tests At Schools</td>
<td>Rapid Antigen Tests at Home</td>
</tr>
<tr>
<td>What tests?</td>
<td>Abbot Binax Now Ellume Home Test Kits</td>
<td>Abbot Binax Now Ellume Home Test Kits</td>
</tr>
<tr>
<td>Frequency</td>
<td>2x per week</td>
<td>2x per week</td>
</tr>
<tr>
<td>Sensitivity/Specificity (asymptomatic)</td>
<td>Binax: 70.2/99.6(^1) Ellume: 91/96(^2)</td>
<td>Binax: 70.2/99.6(^1) Ellume: 91/96(^2)</td>
</tr>
</tbody>
</table>

Teachers & Staff

- **Abbot Binax Now Ellume Home Test Kits**
- **Frequency**: 2x per week
- **Sensitivity/Specificity**: Binax: 70.2/99.6\(^1\) Ellume: 91/96\(^2\)

Students

- **Abbot Binax Now Ellume Home Test Kits**
- **Frequency**: 2x per week
- **Sensitivity/Specificity**: Binax: 70.2/99.6\(^1\) Ellume: 91/96\(^2\)

Both

- **Concentric by Gingko**
- **Frequency**: 1-2x per week
- **Sensitivity/Specificity**: 96/100\(^3\)
Design and analytic plan

Longitudinal observational cohort

• Convergent mixed-methods design
 • Qualitative guides informed by Theoretical Domains Framework to understand behavior change and implementation outcomes

• Surveys to understand testing implementation attitudes

• Mental health assessments

• Secondary data analysis of school testing data

• Target sample sizes for primary data collection
 • 500 caregivers
 • 120 youth (11-16)
 • 120 school employees
Results to date
Community & school engagement activities

- Community Advisory Boards (CABs) in each site
- Community and school engagement activities
- Local approvals
- Three IRBs
Community & school engagement activities

- An estimated 140 meetings held with community partners by our team members since May 1st 2021.
Research approval processes

<table>
<thead>
<tr>
<th>Approvals</th>
</tr>
</thead>
<tbody>
<tr>
<td>WUSD School Board</td>
</tr>
<tr>
<td>CBQ School Board</td>
</tr>
<tr>
<td>TR School Board</td>
</tr>
<tr>
<td>CUSD School Board</td>
</tr>
<tr>
<td>PUSD School Board</td>
</tr>
<tr>
<td>Navajo Prep School Board</td>
</tr>
<tr>
<td>TCUSD School Board</td>
</tr>
<tr>
<td>CCSD School Board</td>
</tr>
<tr>
<td>NNMC Hospital CEO</td>
</tr>
<tr>
<td>CSU CEO</td>
</tr>
<tr>
<td>WR CEO</td>
</tr>
<tr>
<td>Chief of Pediatrics Tuba City</td>
</tr>
<tr>
<td>Navajo Area Office</td>
</tr>
<tr>
<td>WMAT Health Board</td>
</tr>
<tr>
<td>WMAT Tribal Council</td>
</tr>
<tr>
<td>Shiprock Agency Council</td>
</tr>
<tr>
<td>Tuba City Chapter Approval</td>
</tr>
<tr>
<td>Western Agency Council</td>
</tr>
<tr>
<td>Chinle Chapter Approval</td>
</tr>
<tr>
<td>Chinle Agency Council</td>
</tr>
</tbody>
</table>

- **WMAT TC**
 - Approved: 5/5/21

- **JHU IRB**
 - Approved: 6/17/21

- **NNHSRB**
 - Approved: 7/20/21
School testing data
May 1 – July 15
N = 540
n = 289 school personnel
n = 217 students

Over 3000 tests administered
School testing data
May 1 – July 15
$N = 540$

$n = 289$ school personnel

$n = 217$ students
Testing Uptake
May 1 – July 15
Zero cases and low community transmission
Reach of testing overall

May 1 – August 1

540 people tested out of our projected 1,300 people in year 1 through our partnerships with schools implementing COVID-19 testing

• Overwhelming demand with schools interested and exceeding our projections for participation
• Exploring leveraging state funding
Move towards pooled PCR testing

<table>
<thead>
<tr>
<th>Week</th>
<th>Total Pools</th>
<th>Total Swabs</th>
<th>Average Swabs per Pool</th>
<th>Average Turnaround Time in Hours</th>
<th>Approximate number of people tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 26, 2021 - August 01, 2021</td>
<td>2</td>
<td>31</td>
<td>15.5</td>
<td>32</td>
<td>31</td>
</tr>
<tr>
<td>June 21, 2021 - June 27, 2021</td>
<td>1</td>
<td>22</td>
<td>22</td>
<td>31</td>
<td>22</td>
</tr>
<tr>
<td>June 14, 2021 - June 20, 2021</td>
<td>2</td>
<td>30</td>
<td>15</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>June 07, 2021 - June 13, 2021</td>
<td>2</td>
<td>30</td>
<td>15</td>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>
Research recruitment
Challenges & lessons learned

Increased funding, but a real need for implementation support

Testing uptake by parents is challenging at the beginning; address myths and beliefs head on and using multiple strategies

Partner research and practice to enhance reach and impact

No brain tickers for school testing!

Schools use swabs like Q-tips that only go in the lower part of the nose. It's easy, fast, and comfortable.
Resources for schools serving Native American communities

COVID-19 School Testing Toolkit
Johns Hopkins Center for American Indian Health

https://caih.jhu.edu/schoolresources/
Project SafeSchools

Working together to make in-person learning safer for ALL.
ReSET: Restarting Safe Education and Testing for Children with Medical Complexity

University of Wisconsin-Madison

RADx-UP August Workshop - 8/9/2021
Research Objectives

Increase safe return to school for children with medical complexity (CMC) and school personnel through 3 complementary approaches:

- Feasibility of home and school-based testing strategies (Aim 1)
- Predictors of in-person school (Aim 2)
- Consensus priorities for safe in-person school (Aim 3)
Home and School Testing Feasibility

BinaxNOW Rapid Antigen Platform

In-Home Cohort
- Recruited from UW Pediatric Complex Care Program
- *Parents test twice-weekly*

School Cohort
- Recruited from Waisman Early Childhood Program
 - 30% have developmental disabilities
 - *ReSET staff test twice-weekly*
Aim 1 – Adaptive Design

Start (4/2021) → Month 3
← 9/2021
2021-2022 Academic Year
6/2022 → Month 15

In-home cohort
Aim 1a

Community spread ≤ CDC Risk Threshold?
Parent opts into symptom-based testing?

Surveillance 2x weekly
Symptom-based testing (otherwise continue surveillance)

Weekly Testing Data (Parent-report)

Quarterly School Perception Data (Parent-report)
Recruitment and Enrollment
Monthly Enrollment and Surveillance Testing

- **Monthly tests performed**: Graph showing the number of monthly tests performed.
- **In-home cohort**: Line graph showing the number of individuals in the in-home cohort.
- **In-school cohort**: Line graph showing the number of individuals in the in-school cohort.

- **May**: 30 individuals enrolled in surveillance cohorts.
- **June**: 35 individuals enrolled in surveillance cohorts.
- **July**: 45 individuals enrolled in surveillance cohorts.

- **# Monthly Tests Performed**: Graph showing the number of monthly tests performed in May, June, and July.

- **Analysis**: The number of monthly tests performed increases from May to July, with a similar trend for the in-home cohort. The in-school cohort shows a slight increase from May to June, followed by a more significant increase in July.
Demographics of Study Cohorts

<table>
<thead>
<tr>
<th></th>
<th>In-Home</th>
<th>In-School Kids</th>
<th>In-School Staff</th>
<th>Non-testing Survey</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enrolled, n</td>
<td>44</td>
<td>13 of 57 (23%)</td>
<td>18 of 23 (78%)</td>
<td>1014</td>
</tr>
<tr>
<td>Age, years</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-4</td>
<td>-</td>
<td>8 (62)</td>
<td>-</td>
<td>2 (0.2)</td>
</tr>
<tr>
<td>5-10</td>
<td>24 (55)</td>
<td>2 (15)</td>
<td>-</td>
<td>393 (38.9)</td>
</tr>
<tr>
<td>11-13</td>
<td>10 (23)</td>
<td>-</td>
<td>-</td>
<td>235 (23.3)</td>
</tr>
<tr>
<td>14-17</td>
<td>4 (8)</td>
<td>-</td>
<td>-</td>
<td>379 (37.6)</td>
</tr>
<tr>
<td>Not yet reported</td>
<td>6 (14)</td>
<td>3 (23)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Grade</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PreK-5</td>
<td>25 (57)</td>
<td>13 (100)</td>
<td>-</td>
<td>453 (44.6)</td>
</tr>
<tr>
<td>6-8</td>
<td>11 (25)</td>
<td>-</td>
<td>-</td>
<td>244 (24.1)</td>
</tr>
<tr>
<td>9-12</td>
<td>1 (2)</td>
<td>-</td>
<td>-</td>
<td>317 (31.3)</td>
</tr>
<tr>
<td>Not yet reported</td>
<td>7 (16)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Race/Ethnicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White, non-Hispanic</td>
<td>26 (59)</td>
<td>8 (62)</td>
<td>11 (61)</td>
<td>776 (76.7)</td>
</tr>
<tr>
<td>Black, non-Hispanic</td>
<td>2 (5)</td>
<td>1 (8)</td>
<td>-</td>
<td>30 (3.0)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>5 (11)</td>
<td>-</td>
<td>-</td>
<td>86 (8.5)</td>
</tr>
<tr>
<td>Multiracial</td>
<td>1 (3)</td>
<td>-</td>
<td>-</td>
<td>46 (4.5)</td>
</tr>
<tr>
<td>Other</td>
<td>5 (11)</td>
<td>3 (22)</td>
<td>2 (11)</td>
<td>55 (5.4)</td>
</tr>
<tr>
<td>Not yet reported</td>
<td>5 (11)</td>
<td>1 (8)</td>
<td>5 (28)</td>
<td>19 (1.9)</td>
</tr>
</tbody>
</table>
In-Home Testing Cohort

<table>
<thead>
<tr>
<th>Clinical Characteristics</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neurologic disease</td>
<td>91</td>
</tr>
<tr>
<td>GI disease</td>
<td>78</td>
</tr>
<tr>
<td>Genetic / metabolic disease</td>
<td>42</td>
</tr>
<tr>
<td>Cardiovascular disease</td>
<td>40</td>
</tr>
<tr>
<td>Subspecialists, mean</td>
<td>7.3</td>
</tr>
<tr>
<td>Medications, mean</td>
<td>9.0</td>
</tr>
<tr>
<td>Children’s hospital distance, mean</td>
<td>64 min</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Devices</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enteral Tube</td>
<td>78</td>
</tr>
<tr>
<td>Home Oxygen</td>
<td>42</td>
</tr>
<tr>
<td>BiPAP or CPAP</td>
<td>20</td>
</tr>
<tr>
<td>Tracheostomy</td>
<td>13</td>
</tr>
</tbody>
</table>
Early data suggest BinaxNOW Ag surveillance testing is feasible for CMC
Test Feasibility

<table>
<thead>
<tr>
<th></th>
<th>In-Home Cohort, n (%)</th>
<th>In-School Cohort, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total BinaxNOW Tests Conducted</td>
<td>505</td>
<td>536</td>
</tr>
<tr>
<td>Surveillance (asymptomatic)</td>
<td>467 (92.5)</td>
<td>518 (96.6)</td>
</tr>
<tr>
<td>Symptomatic</td>
<td>38 (7.5)</td>
<td>18 (3.4)</td>
</tr>
<tr>
<td>Weekly test log response rate</td>
<td>252 / 277 (93)</td>
<td>N/A</td>
</tr>
<tr>
<td>Tests / subject / week, mean</td>
<td>1.9</td>
<td>1.6</td>
</tr>
<tr>
<td>Test rate (actual / expected)</td>
<td>505 / 554 (91)</td>
<td>536 / 615 (87)</td>
</tr>
<tr>
<td>Importance to continue testing</td>
<td>83% very or extremely</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Test Results

<table>
<thead>
<tr>
<th></th>
<th>In-Home Cohort</th>
<th>In-School Cohort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive BinaxNOW Tests</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Symptomatic Positive</td>
<td>-</td>
<td>7</td>
</tr>
<tr>
<td>Asymptomatic Positive</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Overall BinaxNOW positive rate</td>
<td>NA</td>
<td>1.5%</td>
</tr>
<tr>
<td># PCR confirmed</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td># PCR negative</td>
<td>-</td>
<td>8</td>
</tr>
<tr>
<td>False-positive rate</td>
<td>NA</td>
<td>1.5%</td>
</tr>
</tbody>
</table>
In-Home Testing Challenges are Rare

Test Experiences (n=505)

- No problem, 482
- Minor Problem, 23
 - Child would not cooperate: 10
 - Child too ill or hospitalized: 5
 - Other (e.g., away on vacation): 8
Many CMC were not at school at the end of last academic year
School Attendance for CMC at end of 2021

- In-Home Testing Cohort:
 - In-Person: 55%
 - Virtual: 45%

- In-School Testing Cohort:
 - In-Person: 100%
 - Virtual: 0%

- Non-testing (Survey) Cohort:
 - In-Person: 79%
 - Virtual: 21%
Parent Perceived Risk for CMC Getting COVID at School

In-Home Testing Cohort
- Likely: 35%
- Unlikely: 65%

In-School Testing Cohort
- Likely: 0%
- Unlikely: 100%

Non-testing (Survey) Cohort
- Likely: 12%
- Unlikely: 88%
Demographics, testing, and vaccine perceptions may be weaker drivers of in-person school
In-home Testing Cohort – School Attendance

<table>
<thead>
<tr>
<th></th>
<th>Not Attending</th>
<th>Attending</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K-5</td>
<td>61%</td>
<td>74%</td>
<td>0.60</td>
</tr>
<tr>
<td>6-8</td>
<td>33%</td>
<td>26%</td>
<td></td>
</tr>
<tr>
<td>9-12</td>
<td>6%</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Race/Ethnicity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White, non-Hispanic</td>
<td>78%</td>
<td>67%</td>
<td>0.73</td>
</tr>
<tr>
<td>Black, non-Hispanic</td>
<td>0%</td>
<td>10%</td>
<td></td>
</tr>
<tr>
<td>Hispanic</td>
<td>11%</td>
<td>14%</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>11%</td>
<td>10%</td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>44%</td>
<td>33%</td>
<td>0.53</td>
</tr>
<tr>
<td>Non-English Language</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17%</td>
<td>14%</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>COVID-19 Vaccine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>At least 1 dose</td>
<td>28%</td>
<td>14%</td>
<td>0.43</td>
</tr>
<tr>
<td>None</td>
<td>72%</td>
<td>86%</td>
<td></td>
</tr>
<tr>
<td>COVID-19 History</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ever Positive</td>
<td>0%</td>
<td>11%</td>
<td>0.49</td>
</tr>
<tr>
<td>None</td>
<td>100%</td>
<td>89%</td>
<td></td>
</tr>
</tbody>
</table>
Non-testing (Survey) Cohort – School Attendance

<table>
<thead>
<tr>
<th></th>
<th>Not Attending</th>
<th>Attending</th>
<th>(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K-5</td>
<td>40%</td>
<td>44%</td>
<td>0.008</td>
</tr>
<tr>
<td>6-8</td>
<td>20%</td>
<td>26%</td>
<td></td>
</tr>
<tr>
<td>9-12</td>
<td>40%</td>
<td>30%</td>
<td></td>
</tr>
<tr>
<td>Race/Ethnicity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White, non-Hispanic</td>
<td>80%</td>
<td>79%</td>
<td>0.45</td>
</tr>
<tr>
<td>Black, non-Hispanic</td>
<td>5%</td>
<td>5%</td>
<td></td>
</tr>
<tr>
<td>Hispanic</td>
<td>7%</td>
<td>10%</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>9%</td>
<td>6%</td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>52%</td>
<td>52%</td>
<td>0.15</td>
</tr>
<tr>
<td>Non-English Language</td>
<td>9%</td>
<td>9%</td>
<td>0.94</td>
</tr>
<tr>
<td>COVID-19 Vaccine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>At least 1 dose</td>
<td>45%</td>
<td>34%</td>
<td>0.007</td>
</tr>
<tr>
<td>None</td>
<td>55%</td>
<td>66%</td>
<td></td>
</tr>
<tr>
<td>COVID-19 History</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ever Positive</td>
<td>8%</td>
<td>14%</td>
<td>0.08</td>
</tr>
<tr>
<td>None</td>
<td>92%</td>
<td>86%</td>
<td></td>
</tr>
</tbody>
</table>
Demographics, testing, or vaccine perceptions may be weaker drivers of in-person school attendance and confidence in school mitigation plans strongly related.
In-home Testing Cohort – School Perceptions

- School has adequate access to wash
- Transportation to school is not difficult
- Child and caregivers have access to needed PPE
- Importance of attendance to child’s health
- Unlikely to get COVID-19 at school
- In-person better for child than virtual
- Therapy needs only met in-person
- Attending school positively impacts family
- School able to follow recommendations
- No concern school can take all precautions needed
- Teacher encouraged child attendance
- No concern about PPE quantity
- Attending school helps family keep jobs
- Want child to attend in-person
- No concern about number of people around child
- Attending school positively impacts staff and teachers
- Attending school positively impacts classmates
- No concern about how close people have to be to child
- Child is able to wear a mask
- Most interacting with child are fully vaccinated
- No concern about other children following recs
- No concern about amount of testing at school

P-values:
- P=0.003
- P=0.001
- P=0.01
- P=0.03
- P<0.001
- P=0.01
- P=0.01
- P=0.005
- P=0.01
- P=0.003
- P=0.01
- P=0.01
- P=0.03
Non-testing (Survey) Cohort – School Perceptions

- Transportation to school is not difficult
- Child and caregivers have access to needed PPE
- School has adequate access to wash
- Unlikely to get COVID-19 at school
- Child is able to wear a mask
- Importance of attendance to child’s health
- School able to follow recommendations
- In-person better for child than virtual
- Want child to attend in-person
- No concern about PPE quantity
- No concern school can take all precautions needed
- Attending school positively impacts family
- No concern about number of people around child
- No concern about how close people have to be to child
- No concern about amount of testing at school
- Attending school positively impacts staff and teachers
- Attending school positively impacts classmates
- Teacher encouraged child attendance
- Attending school helps family keep jobs
- No concern about other children following recs
- Therapy needs only met in-person
- Most interacting with child are fully vaccinated

All p<0.01
Changing to In-Home Symptom Testing

<table>
<thead>
<tr>
<th></th>
<th>Symptomatic</th>
<th>Surveillance</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desire child to attend in-person</td>
<td>46%</td>
<td>55%</td>
<td>0.39</td>
</tr>
<tr>
<td>School able to follow recommendations to keep child safe</td>
<td>88%</td>
<td>31%</td>
<td>0.03</td>
</tr>
<tr>
<td>School can take all precautions to stop COVID spread</td>
<td>88%</td>
<td>38%</td>
<td>0.03</td>
</tr>
<tr>
<td>No concern about PPE quantity</td>
<td>88%</td>
<td>38%</td>
<td>0.03</td>
</tr>
<tr>
<td>Most or all interacting with child are fully vaccinated</td>
<td>63%</td>
<td>6%</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Two-thirds of families want to **continue in-home surveillance** testing

Less **school mitigation confidence** associated with continued surveillance testing

No associations with demographics, CMC COVID-19 vaccination status, or CMC history of COVID-19
To support CMC attending school

• Schools likely need to…
 • Use recommended mitigation strategies
 • mask (PPE), vaccinate, distance, hygiene, etc
 • Communicate mitigation plans to families
 • Engage families
 • Teacher encouragement for CMC to attend assoc with 7x higher odds of in-person attendance \((p=0.006)\)
Parents perception of schools

• Parents perceiving school not using mitigation strategies:
 • are less likely to have their child in school
 • also prefer more in-home (surveillance) testing

• Could providing in-home tests to families concerned with school safety address concern & boost attendance?
Statewide Consensus Priorities

"WI stakeholder consensus priorities for safe in-person school for CMC"
WWW.RESET4KIDS.ORG

IN FIRST WEEK
>1000 views
>650 unique users in 4 countries
>200 downloads

CURRENT RESOURCES
• Top 10 consensus priorities
• “1-pager”
• Family FAQ guide
• Healthcare provider template letter
• Social Media content
• More on the way

PRIORITY SUMMARY
• Universal masks, vaccination, school testing
• Respiratory protection plans for staff
• Single use medical equipment
• Safety plans within IEPs, flexible curriculum
• Staff education on CMC, nurse available
• Healthcare team partner, transportation plan
Challenges and Next Steps

Challenges

• Low in-school testing enthusiasm
 • Enroll direct to symptomatic testing
 • Offer in-home (symptomatic) testing
 • This is what we hear parents want
 • Talking with additional schools
 • Talking with WI testing program

• Low (zero) case detection with asymptomatic testing

• Unknown impact of increases in other respiratory viruses

Next Steps

• Finish data collection and analyses

• Longitudinal analyses
 • Repeated surveys, trends
 • Δ School perceptions associated with Δ from surveillance to symptom testing

• Further develop and promote resource inventory
Thank you! Questions?

It's back to school time!

View priorities for a safe return to school for children with complex health needs at

reset4kids.org

Ryan Coller
rcoller@pediatrics.wisc.edu

Greg DeMuri
demuri@pediatrics.wisc.edu

Gemma Warner
gwarner@pediatrics.wisc.edu

reset@pediatrics.wisc.edu
Presentation Outline

1. ROSSEY Overview
2. Aim 1: Key Stakeholder Interviews, Focus Groups & Child Interviews Update and Preliminary Themes
3. Aim 2: Testing Program (COVID-19 Testing + Health Education with Comic Books)
4. RADx-Up Return to School Diagnostic Testing Lessons and Next Steps
Collaborators

• University of Washington School of Public Health and School of Medicine

• Fred Hutchinson Cancer Research Center and Center for Community Health Promotion

• Yakima School District

• Community Advisory Board (CAB)
 - Representing three school districts, Yakima Health District, and the Farmworkers’ Clinic
Study Aims

Aim 1. Identify rural Latino community’s social, ethical, behavioral needs and resources for students to return to school and maintain onsite learning using qualitative assessments with school stakeholders, parents, and students.

Aim 2. Evaluate the effectiveness of a testing program (SARS-CoV-2 testing + risk communication) on student attendance using a cluster randomized controlled trial (RCT) with two intervention arms: current learning model (comparison) and testing program.

Aim 3. Assess implementation outcomes of the testing program with school stakeholders, parents, and children guided by the RE-AIM framework.
Yakima Valley

- Small agricultural communities (apples, pears, peaches, cherries, grapes, and hops)
- Census 2011: Lower Valley has a population of about 100,000
 - ~65% of residents are of Hispanic/Latino
 - Among these residents, 95% are Mexican-American
Aim 1

• Key Stakeholder Interviews (n=20)
 ▪ Completed 19 interviews
 ▪ Reached saturation

• Parent Focus Group (n=4)
 ▪ 2 English (with 5 & 7 participants)
 ▪ 2 Spanish (with 6 & 8 participants)

• Child Interviews (n=20)
 ▪ 16 interviews completed, 3 scheduled, 1 pending

Identify the rural Latino community’s social, ethical, behavioral needs and resources for students to return to school and maintain onsite learning.
Theme 1: COVID-19 pandemic on social, economic, & mental health

• The COVID-19 pandemic impacted families’ social, economic, and mental health and required lifestyle adjustments to meet demands.
 ▪ “Elders paid the price” - unable to attend social gatherings, leading to further isolation.
 ▪ Struggling businesses and loss of employment.

• Children’s mental health issues
 ▪ Lack of social interaction; Difficulties of remote learning; Loss of family members and/or teachers.

• Fatigue with mask wearing among families even after vaccination.

• “We’re looking forward to a brighter next step.”
Theme 2: Schools commitment to evolving needs of students

- Schools provided teachers and families with resources to adjust to the new learning mode
 - secured laptops and hotspots for children
 - created troubleshooting resources for parents
 - helped teachers familiarize with technology
 - weekly meal pickup for students
 - enhanced communication to increase sense of togetherness

- Created a safe environment for children to return to school
 - monitoring temperature
 - providing extra masks
 - hand sanitizers before entering schools and inside/outside each classroom
Theme 2 cont.

• Teachers noted many homes were not good learning environments
 ▪ lack of space for children to immerse in learning
 ▪ distraction in the home environment
 ▪ e.g. living room served many purposes
 ▪ children being pulled in the middle of the classroom to finish chores
 ▪ parents’ limited technology literacy to help their children

• Concerns about widening learning gaps
 ▪ some teachers went above and beyond meeting with parents to provide technical support to improve children’s participation

• Even in the presence of resources, we heard disparities in the impact of policies among communities experiencing SDH
Theme 3: Using testing for school reopening

• All participants were supportive of using testing as a way to return to schools
 ▪ noted needs to educate families about the advances in testing technology (saliva testing, interior nasal swabbing)
 ▪ the benefits of testing (for families more concerned about quarantining after positive test results)
 ▪ dismantle stigma around positive tests

• Mixed opinions on how to implement testing in schools
 ▪ provide testing to all students given many children are asymptomatic
 ▪ should stay optional as it was within students’ rights

• Most agreed that families will participate in testing
 ▪ has become a familiar procedure during the pandemic
Theme 4: Vaccine concerns

• Lack of education about the benefits of testing and discommunication in community.
 ▪ negative perceptions from multiple sources (e.g., disproven scientific paper on vaccine side effects from measles, “bad” experiences with side effects being magnified)
 ▪ long-term side effects
 ▪ vaccine causing sterilization
 ▪ mistrust for government and science – microchips in the vaccine
 ▪ religiosity-related concerns – mRNA affecting the DNA that was created by God, vaccine using fetal tissue, vaccine being the mark of the devil/Satan (Patent #666)
Child Interviews – Five main themes

• Quarantine and social distancing are difficult and often stressful
 ▪ Took a toll on their “feelings and emotions”
• “A fear of what they put” in the vaccine
 ▪ Getting the vaccine will get the “government to control”
 ▪ “Vaccines will have magnets or chip”
 ▪ “Getting the vaccine will only make me more sicker”
• Fear of side effects from getting the vaccine
 ▪ J&J vaccine giving young adults heart problems and blood clots
• Family have a strong influence on them getting the vaccine
• Main motivation for getting tested is “wanting the pandemic to end”
Aim 2 – Pilot

Aim 2 pilot study in May – June 2021 with one school then 4 additional during summer school to understand the implementation steps.

- 70 interested participants
- 46 total enrolled participants
- Discovery Lab School (K-8) participated as the spring pilot school
 - 24 / 27 enrollments did not continue after spring semester
- Extension of pilot to 4 summer school programs during a 6-week period (June 21-July 23)
COVID-19 positivity rate

• 27 (59%) participants preferred home collection
• 3 COVID-19 positive cases (one family household)
Pilot Demographics: Age (n=46)

Age Distribution:
- 5-9 years: 33%
- 10-13 years: 22%
- 14-17 years: 2%
- 18-49 years: 20%
- 50-64+ years: 24%
Position and Grade Level

POSITION IN SCHOOL

- Teacher: 54%
- Administrator: 20%
- Student: 20%
- Other: 4%
- Prefers not to specify: 2%

GRADE LEVEL (STUDENTS ONLY)

- K-2nd: 32%
- 3rd-5th: 47%
- 6th-8th: 21%
Enrollment Trends

*Not including Role Not Specified (n=1)
Comic Book 1: Playdate during the pandemic

- Follows the main characters (siblings Hector, Mya, and Ava and their friend Aaron) and their experiences during the COVID-19 pandemic.
Comics
• 3 comics tailored for students (masking, testing, vaccine)
• 2 comics tailored for parents (focusing on misinformation discovered from qualitative work)
• Messages infused with constructs from the Health Beliefs Model and the Self Determination Theory
Key Take-aways From Pilot

• Recruitment and enrollment have been more challenging than anticipated

• Simplified consent forms and hands-on recruitment for Spanish speaking parents

• Logistics for multiple schools are manageable with trained staff

• Multiple recruitment strategies needed

• CAB’s preference for parent-facing education tool on video format (rather than comic book)
Next Steps

• Full trial enrollment starts on 8/25/21 (start of school year)
 ▪ Goal of 900 children

• Address concerns for randomization in the trial design

• Will monitor testing fatigue during the full study period

• Strategies to address testing fatigue
 ▪ Coordinate with school testing activities to avoid overlap
 ▪ Education video to reframe the testing technology and burden of testing
Questions

Thank you for your attention
Questions?
¿Tienen Preguntas?
SARS-CoV-2 Screening and Diagnostic testing for return to K-12 schools

Kanecia Zimmerman, MD MPH

Monday, August 9th, 2021
Agenda

• Project Overview
 – Project overview and scope

• Recruitment – Testing Initiative

• Major Outcomes to Date
 – Community Engagement and Education
 – Outcomes of testing program
 – Qualitative data

• Lessons Learned

• Next Steps
Two major problems to solve:

With mitigation strategies in place (masking, hand hygiene, physical distancing), within school transmission is low and schools can safely reopen.

Even as schools are reopening:
- Black and Latino students have been less likely to return in-person to school compared to white students
- Quarantine requirements after exposure have led to prolonged periods of time out of schools (substantial individual and community risk:benefit)
 - Inherently worse among those with limited access/uptake of testing after exposure
 - Access to testing has been more limited in underserved communities.
Overview: Project Scope and Goals

Long-term goals: to ensure the safe and equitable return of K-12 school children to US public schools, maximize access to in-person learning, and limit the spread of SARS-CoV-2 in Black and Latino communities.

– **AIM 1**: Assess the effectiveness of rapid, school-based SARS-CoV-2 screening testing in reducing within-school transmission and restoring trust among Black and Latino families.

– **AIM 2**: Assess uptake of school-based testing and time to safe school return after exposure.

– **AIM 3**: Identify the perceived benefits, concerns, and barriers to school-based SARS-CoV-2 testing and in-person learning among Black and Latino families.
Recruitment – Testing Initiative
Enrollment

Enrollment by Race/Ethnicity

Enrollment Over Time

By Cohort

Cumulative Enrollment

- Hispanic
- Black
- White
- Other

Screening
- Exposure

50% 32% 10% 8%

Cumulative Enrollment

- Screening
- Exposure

44% 56%
Durham Charter Schools Enrollment

Enrollment by race/ethnicity compared to school totals

![Bar chart showing enrollment by race/ethnicity]

<table>
<thead>
<tr>
<th>School</th>
<th>Hispanic</th>
<th>Black</th>
<th>White</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carter</td>
<td>10%</td>
<td>20%</td>
<td>10%</td>
</tr>
<tr>
<td>Kestrel Heights</td>
<td>30%</td>
<td>30%</td>
<td>30%</td>
</tr>
<tr>
<td>CPCFS</td>
<td>40%</td>
<td>40%</td>
<td>20%</td>
</tr>
<tr>
<td>Voyager</td>
<td>50%</td>
<td>20%</td>
<td>10%</td>
</tr>
<tr>
<td>IDYL</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Enrollment by Race/Ethnicity

![Bar chart showing cumulative enrollment by race/ethnicity]

- **Carter**: 48% Hispanic, 2% Black, 1% White
- **Kestrel Heights**: 42% Hispanic, 2% Black, 1% White
- **CPCFS**: 42% Hispanic, 4% Black, 1% White
- **Voyager**: 10% Hispanic, 1% Black, 1% White
- **IDYL**: 0% Hispanic, 0% Black, 0% White

Note: The chart provides a visual representation of enrollment data by race/ethnicity across different schools, with specific percentages for Hispanic, Black, and White students.
Iredell-Statesville Schools Enrollment

Demographics of participants at Iredell-Statesville Schools

Enrollment by Race/Ethnicity

Cumulative Enrollment by Race/Ethnicity
Major Outcomes to Date
Major Outcomes: Community engagement and education

- Over 50 school board meetings to provide expertise and answer questions
 - ~60% k-12 masked in NC
 - ~20% unmasked but monitoring and providing data
- Hundreds of faculty to school leadership calls
- 10s of school/district-wide staff meetings
- Dozens of meetings with community members
- Extensive interaction with NCDHHS, DPI, General Assembly
 - NC legislation to require access to in-person school (March 2020)
- Extensive educational resources:
 - Abcsciencecollaborative.org
 - Testing infographics/flowchart and decision tree
 - Vaccination videos
 - Lay summaries and reports
 - Media briefings on available data
 - "Year in Review"
School Testing: Testing Results

Key takeaways and findings from the testing initiative to date:

- None of the positive cases in the Durham Charter Schools were identified through the screening testing initiative; no effect on within-school transmission.
- The proportion of positive tests after initiation of the testing program dropped substantially, suggesting that the RTS program increased total testing access and that testing access was not biased by concerns for test positivity.

Reported cases and secondary transmission in Durham Charter Schools prior to and during testing initiative:

<table>
<thead>
<tr>
<th>SCHOOL</th>
<th>Primary cases Before testing</th>
<th>After testing*</th>
<th>Secondary Transmission Before testing</th>
<th>After testing*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carter</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CPSFC</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>IDYL</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kestrel</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Voyager</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

*cases not identified through OTA surveillance testing program; they were reported from external sources.
School Testing Results: Effect on Access

Key takeaways and findings from the testing initiative to date

- The exposure testing program increased access to testing.
- The percentage of exposed students and staff tested after the initiation of the testing program increased by 29 percentage points. Only 8% of exposed individuals were tested prior to the testing program, whereas 37% of exposed individuals were tested after.
- Access to testing increased in both schools with high proportions of underserved populations as well as in schools where the testing program was expanded.

Table 7. Exposure testing access in all Iredell Statesville Schools*

<table>
<thead>
<tr>
<th></th>
<th>Before testing program</th>
<th>After testing program</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N (%)</td>
<td>N (%)</td>
<td>N (%)</td>
</tr>
<tr>
<td>Not tested</td>
<td>567 (92)</td>
<td>524 (63)</td>
<td>1091 (76)</td>
</tr>
<tr>
<td>Tested</td>
<td>50 (8)</td>
<td>302 (37)</td>
<td>352 (24)</td>
</tr>
<tr>
<td>Totals</td>
<td>617</td>
<td>826</td>
<td>1443</td>
</tr>
</tbody>
</table>

Table 9. Comparison of exposure testing access in pre-specified Iredell Statesville Schools** vs other Iredell Statesville Schools with expanded testing

<table>
<thead>
<tr>
<th></th>
<th>Proportion tested before</th>
<th>Proportion tested after</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-specified Iredell Statesville Schools</td>
<td>0.09929078</td>
<td>0.285371703</td>
</tr>
<tr>
<td>Iredell Statesville Schools participating in expanded testing</td>
<td>0.077731</td>
<td>0.447433</td>
</tr>
</tbody>
</table>

*Pearson chi²(1) = 155.0863 Pr = 0.000

**Pre-specified Iredell Statesville Schools include the seven (7) schools previously designated in the grant application to have high proportions of underserved populations.
School Testing Results: Effect on Quarantine Duration

Key takeaways and findings from the testing initiative to date

- Duration of quarantine decreased after initiation of the testing program.
- This has a large impact on reducing the time missed from school due to quarantine and within-school exposures.

Table 10. Days of quarantine in all ISS after in-school exposure*

<table>
<thead>
<tr>
<th></th>
<th>Before testing program</th>
<th>After testing program</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N (%)</td>
<td>N (%)</td>
<td>N (%)</td>
</tr>
<tr>
<td>Quarantine < 10 days</td>
<td>136 (22)</td>
<td>409 (50)</td>
<td>545 (38)</td>
</tr>
<tr>
<td>Quarantine ≥ 10 days</td>
<td>481 (78)</td>
<td>417 (50)</td>
<td>898 (62)</td>
</tr>
<tr>
<td>Total</td>
<td>617</td>
<td>826</td>
<td>1443</td>
</tr>
</tbody>
</table>

*Pearson chi2(1) = 113.4200 Pr = 0.000

Table 11. Days of quarantine in pre-specified ISS

<table>
<thead>
<tr>
<th></th>
<th>Before testing program</th>
<th>After testing program</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N (%)</td>
<td>N (%)</td>
<td>N (%)</td>
</tr>
<tr>
<td>Quarantine < 10 days</td>
<td>32 (23)</td>
<td>196 (47)</td>
<td>228 (41)</td>
</tr>
<tr>
<td>Quarantine ≥ 10 days</td>
<td>109 (77)</td>
<td>221 (53)</td>
<td>330 (59)</td>
</tr>
<tr>
<td>Total</td>
<td>141</td>
<td>417</td>
<td>558</td>
</tr>
</tbody>
</table>
Qualitative Investigation: Phase 1

- Identify the preferences for and perceived outcomes of school-based SARS-CoV-2 testing among parents and caregivers of Black and Latino/a/x students and school personnel
- Describe factors influencing decisions to return to school among parents and caregivers of Black and Latino/a/x students

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>No. (%)</th>
<th>n=6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-39</td>
<td>1 (16.7)</td>
<td></td>
</tr>
<tr>
<td>40-49</td>
<td>3 (50.0)</td>
<td></td>
</tr>
<tr>
<td>50-59</td>
<td>1 (16.7)</td>
<td></td>
</tr>
<tr>
<td>60-69</td>
<td>0 (0.0)</td>
<td></td>
</tr>
<tr>
<td>70-79</td>
<td>1 (16.7)</td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cisgender female</td>
<td>6 (100.0)</td>
<td></td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black or African American</td>
<td>6 (100.0)</td>
<td></td>
</tr>
<tr>
<td>Hispanic/Latino/a/x ethnicity</td>
<td>1 (16.7)</td>
<td></td>
</tr>
<tr>
<td>Highest Level of Education</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High school graduate/GED</td>
<td>2 (33.3)</td>
<td></td>
</tr>
<tr>
<td>Technical/Vocational/Associate's degree</td>
<td>1 (16.7)</td>
<td></td>
</tr>
<tr>
<td>Master's degree</td>
<td>3 (50.0)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>No. (%)</th>
<th>n=7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-39</td>
<td>1 (14.3)</td>
<td></td>
</tr>
<tr>
<td>40-49</td>
<td>6 (85.7)</td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cisgender female</td>
<td>6 (85.7)</td>
<td></td>
</tr>
<tr>
<td>Cisgender male</td>
<td>1 (14.3)</td>
<td></td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black or African American</td>
<td>2 (28.6)</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>5 (71.4)</td>
<td></td>
</tr>
<tr>
<td>Hispanic/Latino/a/x ethnicity</td>
<td>1 (14.3)</td>
<td></td>
</tr>
<tr>
<td>Highest Level of Education</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bachelor's degree</td>
<td>2 (28.6)</td>
<td></td>
</tr>
<tr>
<td>Master's degree</td>
<td>5 (71.4)</td>
<td></td>
</tr>
<tr>
<td>Position</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teacher</td>
<td>7 (100.0)</td>
<td></td>
</tr>
<tr>
<td>Grade levels taught</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kindergarten–3</td>
<td>2 (28.6)</td>
<td></td>
</tr>
<tr>
<td>4–5</td>
<td>3 (42.9)</td>
<td></td>
</tr>
<tr>
<td>9–12</td>
<td>2 (28.6)</td>
<td></td>
</tr>
</tbody>
</table>
Qualitative Investigation: School Personnel and Parent/Caregiver Perspectives

<table>
<thead>
<tr>
<th>School Personnel Perspectives</th>
<th>Parent/Caregiver Perspectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suggestions for School Based Testing:</td>
<td>Possible benefits of School-Based Testing</td>
</tr>
<tr>
<td>· Parental involvement and consent is needed</td>
<td>· Providing a safe school environment</td>
</tr>
<tr>
<td>· The framing/presentation of the testing program to the school community is important for the acceptance</td>
<td>· Providing families with peace of mind</td>
</tr>
<tr>
<td>· Communication of clear expectations is important for acceptance</td>
<td>· Reducing community spread</td>
</tr>
<tr>
<td>· Communications with parents about school testing should be science- and data-based</td>
<td>Concerns about School-Based Testing</td>
</tr>
<tr>
<td>· Teacher involvement is important in designing the testing program to provide input on how best to minimize teacher burden and classroom disruptions</td>
<td>· Logistics of the testing procedures</td>
</tr>
<tr>
<td></td>
<td>· Who is administering the test</td>
</tr>
<tr>
<td></td>
<td>· How students’ privacy will be maintained</td>
</tr>
<tr>
<td></td>
<td>· Accuracy of home-based test results</td>
</tr>
<tr>
<td></td>
<td>· Some parents described experiences with school-based stigma or discrimination due to race prior to the pandemic</td>
</tr>
</tbody>
</table>
Qualitative Investigation: Main Findings

<table>
<thead>
<tr>
<th>School Personnel Perspectives</th>
<th>Parent/Caregiver Perspectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suggestions for Return to In-School Learning</td>
<td>Facilitators for Return to In-School Learning</td>
</tr>
<tr>
<td>· Schools need clear and consistent COVID-19 protocols</td>
<td>· Providing school-based testing influences some parental/caregiver decisions</td>
</tr>
<tr>
<td>· Healthcare professionals should make contact with affected families</td>
<td>· School personnel should be notified of students’ test results because of the exposure risk</td>
</tr>
<tr>
<td>· Schools should develop plans for keeping students who test positive engaged during the quarantine period</td>
<td>· Teachers should prepare take-home materials and care packages for students who are diagnosed with COVID-19</td>
</tr>
<tr>
<td></td>
<td>Barriers for Return to In-School Learning</td>
</tr>
<tr>
<td></td>
<td>· Decisions about returning to in-school learning were rarely impacted by experiences with stigma or discrimination prior to the pandemic</td>
</tr>
<tr>
<td></td>
<td>· Concern about adherence to safety procedures by parents/caregivers, students, and schools</td>
</tr>
<tr>
<td></td>
<td>· The potential for exposure for children and their families</td>
</tr>
</tbody>
</table>

THE ABC SCIENCE COLLABORATIVE
Qualitative Investigation: Dissemination and Program Outcomes

Dissemination of Findings

• Health and education stakeholders received a rapid analysis report that summarizes key points
• Community stakeholders received a rapid analysis report that summarizes key points
• Participants received a brief summary of the research findings, immediately prior to the release of the rapid analysis report
• Education stakeholders received a detailed report after the formal analyses using applied thematic analysis are complete

Outcomes

• Increased interest in participating in future qualitative rounds
• Opportunity to reimagine testing
• Meetings organized with state officials on potential ABC-NC Gov collaboration related to school testing
Community Response to our Work

“I just personally want to say thank you to the entire ABC Science Collaborative Team. For over a year, you all have put in tireless hours for the people and schools in NC. Through your work, [School Name] has been open for 3 weeks successfully and has implemented all the health and safety protocols we learned through working with the ABC Science Collaborative team. While, I know it is a day-by-day effort, and staying diligent with the safety protocols, I know schools can open for students. Please know we value the partnership and will support any of your efforts and initiatives.”

“Our daughters will return to school in-person in August. Only two of our four daughters are old enough to be vaccinated...we will continue to practice the 3W's as we re-introduce ourselves back into in-person everything. Thanks again for everything y'all are doing in the COVID world. You have no idea how much families like mine appreciate and value your work. It's literally keeping us safe, healthy and alive! Stay well!”
Lessons Learned

School Testing and Postulates for Variable Recruitment
School Testing Results: Key Takeaways

- In schools where screening testing was conducted, we found:
 - Enrollment was lower than expected
 - No positives
 - No secondary transmission in schools with mitigation strategies in place
- Offering testing after exposure is helpful – associated with increased testing uptake
- Able to make an impact on missed school days
- Dissemination and response to community requests are important
 - Can we reimagine our testing program in a way that is most useful for the community?
- Testing can be helpful in schools, but in this political climate, if our goal is safe return to in-person school, k-12 communities need:
 - Access to the science in order to weight risks and benefits of COVID-19 mitigation efforts (ex. masking/testing protocol)
 - Advocacy from those who understand what is happening on the ground.

*Pearson chi2(1) = 113.4200 Pr = 0.000
Postulates for variable recruitment

<table>
<thead>
<tr>
<th>Postulate</th>
<th>Solution</th>
</tr>
</thead>
</table>
| School leaders and parents may have different goals as it pertains to testing and COVID-19 in general; Families on the fence may need evidence of benefit | • Continued dissemination of testing results
• Concentration on areas where clear evidence of benefit
• Re-imagine testing program based on feedback from qualitative aims. |
| COVID-19 fatigue/substantial politicization | • Continued community engagement; boots on the ground to be able to relate to parents and other community members; changing COVID-19 dynamic (delta variant) |
| Concerns about privacy | • At home testing pilot |
| Hesitancy from school leaders to push testing initiative (end of the year protocols) | • New school year, new variants, more children in schools may prompt school leaders to encourage testing
• Important to note that school leaders are facing many obstacles |
| Parents who decided to return to school this spring may general represent a cohort that is less interested in testing | • Introduce possibility of testing to new cohort of parents with children returning to school (qualitative study suggests parents who were remote may be interested) |
| New state resources (from federal funds) to support testing in schools | • So far, schools remain interested in Duke collaboration (relationship and benefit beyond testing)
• Look to collaborate with the state |
Next Steps
Next Steps

• Dissemination of findings through manuscripts (Pediatrics supplement)
• Continued dissemination to the public (lay summaries)
• Use data from qualitative evaluation (and available scientific evidence) to revamp testing programs --> expansion of testing opportunities in some partner schools
• Expand reach – collaborations with additional districts
• Collaboration with NCDHHS on state/federally-sponsored testing program
• Qualitative program: phase 2
Thank you.

Study Email: SchoolSETStudy@dm.duke.edu
School TLC Study

Support for Safe Return to In-Person School: COVID-19 Testing, Learning, and Consultation

Dana Keener Mast, PhD, ICF
Jennifer Goldman, MD, CMKC
Jennifer Schuster, MD, CMKC

RADx-UP Return to School Phase I and II Workshop

August 9, 2021
Test Preference Study

Aim: Determine preferred testing strategy among students and staff

We collected a nasal swab and saliva sample from 135 study participants and asked,

“Which test did you like better?”

135 study participants
- 50% students
- 50% adult staff
- 54% female
- 32% Hispanic/Latino
- 21% Black non-Hispanic
- 34% White non-Hispanic
- 13% Other race
Most participants preferred the **nasal swab**

Test preference varied by age group, with adults strongly preferring the nasal swab and elementary students split almost 50/50.

- **Adult Staff (n=67)**
 - Nasal swab: 91%
 - Saliva test: 9%

- **Middle/High Students (n=29)**
 - Nasal swab: 66%
 - Saliva test: 34%

- **Elementary Students (n=39)**
 - Nasal swab: 49%
 - Saliva test: 51%
Hispanic/Latino participants slightly preferred the **saliva test**—this group included more elementary students.

<table>
<thead>
<tr>
<th></th>
<th>Nasal swab</th>
<th>Saliva test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hispanic/Latino (n=43)</td>
<td>47%</td>
<td>53%</td>
</tr>
<tr>
<td>Black Non Hispanic (n=28)</td>
<td>86%</td>
<td>14%</td>
</tr>
<tr>
<td>White Non Hispanic (n=46)</td>
<td>89%</td>
<td>11%</td>
</tr>
<tr>
<td>Other (n=18)</td>
<td>78%</td>
<td>22%</td>
</tr>
</tbody>
</table>

Females had a stronger preference for the **nasal swab** than males.

<table>
<thead>
<tr>
<th></th>
<th>Nasal swab</th>
<th>Saliva test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female (n=73)</td>
<td>84%</td>
<td>16%</td>
</tr>
<tr>
<td>Male (n=59)</td>
<td>61%</td>
<td>39%</td>
</tr>
</tbody>
</table>

Testing Preference Study
Those who preferred the **nasal swab**... (n=99)

Like the nasal swab better because
- It was faster (60%)
- It was easier (60%)

Dislike the saliva test as much because
- It took too long (51%)
- It was hard to do (49%)
- It was gross (28%)
Those who preferred the saliva test... (n=36)

...liked the saliva test better because

- It was easier (39%)
- Did not like the other one (22%)
- It felt better (22%)

...did not like the nasal swab as much because

- It was uncomfortable (44%)
- It was painful (28%)
Formative Needs Assessment

Aim: Identify attitudes, knowledge, and barriers that influence choice to enroll in testing and return to in-person learning

Parent Survey
n=261
40 questions
Topics:
In-person schooling
COVID-19 testing & vaccination
School communications

Parent Interviews
n=21
30 minutes
Topics:
In-person schooling
COVID-19 testing & vaccination
School communications

Staff Interviews
n=10
30 minutes
administrators, nurses, teachers, district staff
Topics:
Needs, barriers, testing, school communications
Parents largely support COVID-19 testing in school

Do you like that your child’s school offers COVID-19 testing at school?
- Yes: 61%
- Some: 31%
- No: 8%

Do you believe COVID-19 testing helps keep students and staff safe in school?
- Yes: 62%
- Some: 28%
- No: 10%

Does COVID-19 testing at school make you feel more comfortable with your child going to school in person?
- Yes: 51%
- Some: 34%
- No: 15%

Even so, less than 4% of students enrolled in testing in phase 1
Not wanting child tested “when I’m not there” was the top reason for not enrolling child in testing

Please check all the reasons you chose not to have your child tested for COVID-19 at school?

<table>
<thead>
<tr>
<th>Reason</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>I do not want my child tested when I'm...</td>
<td>43%</td>
</tr>
<tr>
<td>I do not know enough about the test</td>
<td>29%</td>
</tr>
<tr>
<td>I do not want my child to be in a study</td>
<td>23%</td>
</tr>
<tr>
<td>My child is afraid of the test</td>
<td>13%</td>
</tr>
<tr>
<td>COVID-19 testing is not needed</td>
<td>10%</td>
</tr>
<tr>
<td>I do not want results shared with school</td>
<td>6%</td>
</tr>
<tr>
<td>I do not want to go into quarantine</td>
<td>4%</td>
</tr>
<tr>
<td>I do not want my child to go into...</td>
<td>3%</td>
</tr>
</tbody>
</table>

n=150

Formative Needs Assessment – Parent Survey
Nearly 3 out of 4 parents said that required masking is important to them while children are in school.

Which of the following activities are important to you while your child goes to school in person?

<table>
<thead>
<tr>
<th>Activity</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masks required during the school day</td>
<td>73%</td>
</tr>
<tr>
<td>Classrooms cleaned and disinfected daily</td>
<td>68%</td>
</tr>
<tr>
<td>Students and staff wash hands throughout the school day</td>
<td>57%</td>
</tr>
<tr>
<td>Students and staff practice physical distance</td>
<td>48%</td>
</tr>
<tr>
<td>School tells us about positive COVID-19 cases</td>
<td>39%</td>
</tr>
<tr>
<td>Physical barriers between students' on campus</td>
<td>38%</td>
</tr>
<tr>
<td>Immediate contact tracing when positive COVID-19 cases are reported</td>
<td>32%</td>
</tr>
<tr>
<td>COVID-19 testing is offered at school</td>
<td>28%</td>
</tr>
</tbody>
</table>

n=261
Lessons Learned from Testing in Schools

Opportunities to **connect directly with parents** is far more effective than email for increasing enrollment in testing.

Strong relationships with school nurses facilitated school communications, testing setup, symptomatic testing, and reporting results.

Framing COVID-19 testing as a school **safety measure** was more motivating than promoting “free testing” or a research study.

Trusted school champions were instrumental in recruiting staff and students for testing.

Clear communication with school staff about the who, what, when, and where of testing ensures families receive accurate information.

Athletic coaches were effective in encouraging parents to enroll students in testing.
School TLC Study Phase 1 Weekly Enrollment and Testing

Total Enrolled = 152 Total Tested = 140
Strategies to Address Testing Fatigue

• We have not done repeat testing to date, but will begin weekly testing in the Fall
• Surge in Delta variant is renewing commitment to COVID-19 mitigation
• Messaging “Help us keep kids safe and in school”
Phase 2: Enhanced Intervention

COVID-19 Testing
- Weekly screening
- Symptomatic testing
- Nasal swab

Medical Consultation
- Monthly school walk-throughs and consults
- Bimonthly COVID-19 quick facts
- Family forums

Tailored Communications
- Multicultural messaging
- Microsite communication resources hub
- Social media buys
- Targeting testing and masking behavior
Phase 2: Comparative Outcomes Study

Aim: Determine how schools receiving enhanced intervention compare to schools receiving “testing as usual” on key metrics

Metrics
- Absenteeism
- Case counts
- Vaccination rates
- Parent satisfaction

Data Sources
- Secondary district and school data
- Repeated parent survey
Safe Return to School for Children with Intellectual/Developmental Disabilities

Luther Kalb, PhD, MHS
Director of Informatics
Center for Autism and Related Disorders
Department of Neuropsychology
Kennedy Krieger Institute

Assistant Professor
Department of Mental Health
Johns Hopkins Bloomberg School of Public Health

Chair, National Research Consortium on MH-IDD
Center for START Services
University of New Hampshire
Co-PIs

Christina A Gurnett, MD, PhD
Ernest and Jane G. Stein Professor of Developmental Neurology
Director of the Division of Pediatric and Developmental Neurology
Co-Director of the IDDRC Washington University in St Louis

Jason Newland, MD, M.Ed.
Professor of Pediatrics
Pediatric Infectious Diseases
Washington University, St. Louis
Impact of COVID-19 on persons with IDD

Covid-19 has disproportionately impacted those living with developmental disabilities

By Naomi Thomas, CNN

Updated 8:08 PM ET, Fri August 28, 2020.

CNN Heroes: A lifeline for people with disabilities in Colombia 01:10

(CNN) — The coronavirus pandemic has had an especially harsh impact on people with
Impact of COVID-19 on persons with IDD

• Direct effect of COVID-19 on children’s health
 o Fatality rate 1.6% for children with IDD vs <0.1% neurotypical children (Turk et al., 2020)

• Loss of Services (Constantino et al., 2020)
 o Therapy
 o Socialization
 o Healthcare
 o Detection of medical risk/neglect
 o Nutrition

• Impact on the well-being of families (Kalb et al., In Press) and Children (Vasa et al., 2020)
COVID-related Challenges in IDD

• Wearing a face mask

• Social distancing

• Hand hygiene

• Difficulty reporting symptoms

• Potential for multiple exposures (aides, therapists, bus drivers)
Specific Aims

• To evaluate the impact of implementation strategies on the uptake of weekly SARS-CoV-2 testing in students with IDD and school staff through a blocked, randomized adaptive clinical trial.

• To assess perspectives among parents of students with disabilities who do not return to in-person instruction regarding the impact of COVID-19 and importance of SARS-CoV-2 testing and vaccine
PCR, Saliva-Based Testing

1. No RNA extraction step (eliminates need for “reagents”)
2. Saliva-based diagnostic test (50ul)
3. Uses Fluidigm Advanta DX SARS-CoV-2 assay
4. Highly sensitive and specific
5. Rapid 3 hour test results
6. Scaling to 50K/week; cost $26.07/test
7. Development to EUA submission - 4wks
Setting (N=500 students and staff)

Fairmount

Montgomery

LEAP

High School
Picture of testing staff
Study Goals and Timeline

<table>
<thead>
<tr>
<th>Period</th>
<th>Goals</th>
</tr>
</thead>
<tbody>
<tr>
<td>April-June, 2021</td>
<td>• Management of IRB Reliance Across 3 sites (JHSOM, JHSPH, WU)</td>
</tr>
<tr>
<td></td>
<td>• Testing Preparation</td>
</tr>
<tr>
<td>July, 2021</td>
<td>• IRB Approval</td>
</tr>
<tr>
<td></td>
<td>• Begin conducting weekly asymptomatic COVID-19 testing</td>
</tr>
<tr>
<td>October, 2021</td>
<td>• Complete Fuzzy Cognitive Mapping; Launch Survey</td>
</tr>
<tr>
<td>January, 2022</td>
<td>• Randomize Schools To Customized Messaging Strategy</td>
</tr>
</tbody>
</table>
Outcomes

- Enrolled N=87 Staff, N=2 Students
- Completed N=347 Tests
- N=1 Positive Case
Challenges

- Teacher survey examining COVID-19 preventive strategies
- June, 2021
- N=230 (63% MD/DC, 37% MO)
- Testing is not highly rated
Challenges

- Central IRBs should be taken into start-up consideration
- KKI Schools have *just returned* to in-school instruction
- Heavy staff turn over makes this “one more thing”; lack of incentive
- History of scientific misconduct at KKI (lead abatement study) and JHU (Henrietta Lacks)
- Lack of utility due to vaccines (and KKI requirements) as well as low regional positivity rate
- Parental concerns about managing positives tests among students as well as testing logistics
Immediate Solutions

• Met with Missouri and Maryland Community Advisory Boards

• Rolling out an advertisement campaign in September to promote upcoming study incentive ($5 per test; $200-250 max)

• New Flyers, Phone and Email Scripts

• Reporting results in Bi-Weekly Newsletter (parents/staff)

• Present at Back-to-School Night and Staff Professional Development Days

• Increase Age of Student Enrollment (from 17 to 22)
"We’re excited to add weekly testing to our COVID-19 safety toolkit so students with disabilities are able to more safely and fully return to in-person instruction,” says Dr. Linda Myers, the Institute’s vice president of school programs and one of the study’s co-principal investigators. “We are hopeful that the results of this study will be helpful for school communities across the country, as we continue to navigate the pandemic.”

“Routine testing is important, since many children with intellectual and developmental disabilities have difficulty with preventive measures, such as mask-wearing, hand hygiene, and social distancing,” explains Dr. Luther Kalb, director of the Informatics Program at the Institute’s Center for Autism and Related Disorders, and another co-principal investigator of the study. “This puts them at increased risk for contracting the coronavirus. Many of these children also have underlying medical conditions that put them at a higher risk for having poor outcomes if they develop COVID-19.”

To understand the best ways to prepare a child with intellectual or developmental disabilities for weekly testing, Kennedy Krieger conducted focus groups with parents of students attending Kennedy Krieger schools. Among other things, the focus groups revealed that preparing a child to receive a coronavirus test in the very environment in which the test will take place is extremely helpful. Kennedy Krieger School Programs’ four schools, which serve students ages 3 to 21, serve children with a wide range of disabilities.”
Long Term Solutions

• Tik-Tok Video

• Stickers

• Novel Messaging Campaign in January
Thank You

Safe return to school for all
Acknowledgements

The COMPASS-T Study Team:

John N. Constantino, MD, Washington University School of Medicine, St. Louis, MO
Bradley L. Schlaggar, MD, PhD, Kennedy Krieger Institute, Baltimore, MD
Victor B. Brodsky, MD, Washington University School of Medicine, St. Louis, MO
Julie A. Neidich, MD, Washington University School of Medicine, St. Louis, MO
Albert M. Lai, PhD, Institute for Informatics, Washington University School of Medicine, St. Louis, MO
Bret E. Maricque, PhD, McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO
Luther G. Kaft, PhD, Kennedy Krieger Institute, Baltimore, MD
Linda S. Myers, EdD, Kennedy Krieger Institute, Baltimore, MD
George S. Golio IV, PhD, Institute for Human Development, University of Missouri-Kansas City, Kansas City, MO
Stephanie A. Friz, MD, PhD, Washington University School of Medicine, St. Louis, MO
Esther Lu, PhD, Washington University School of Medicine, St. Louis, MO
Virginia R. McKay, PhD, Institute for Public Health, Brown School of Social Work, Washington University in St. Louis, St. Louis, MO
Stephanie M. Morris, MD, Washington University School of Medicine, St. Louis, MO
Byron J. Powell, PhD, Institute for Public Health, Brown School of Social Work, Washington University in St. Louis, St. Louis, MO
Nancy B. Mueller, MPH, Brown School Evaluation Center, Washington University in St. Louis, St. Louis, MO
James M. Dubas, PhD, Institute for Public Health, Brown School of Social Work, Washington University in St. Louis, St. Louis, MO
Joyce E. Balls-Berry, PhD, Institute of Gender and Translational Sciences, Washington University School of Medicine, St. Louis, MO
Charlina A. Coburn, PhD, Array Communications Research Laboratory, Brown School of Social Work, Washington University in St. Louis, MO
Mary Cariola Center (MCC) serves moderate-to-severe IDD children (N=425) via a large professional support staff (N=450). 70% of MCC students live in poverty, and 33% are from under-represented minority backgrounds. 100% are on federal food assistance programs.
Five Major Goals:

1) **Virological Testing:** We will establish a nasal-swab FDA-approved testing regimen to monitor and identify disease outbreak in a school setting at ultra-high risk for COVID-19 transmission. We will rapidly identify infections and develop approaches for isolating and contact-tracing to stem virus spread.

2) **Serological Testing:** Serology will establish background immunity levels in students and staff, from infection or vaccination, following those who are antibody-positive longitudinally to quantify temporal decay of IgG and neutralizing antibody levels. We will determine whether protective immunity in children with IDD, a population with prevalent immunological dysfunction, wanes at accelerated rates compared to the population-at-large.

3) **Modeling to Optimize Testing:** We will use agent-based simulation models to guide testing strategies and interventions in this specialized population. Simulations will be conducted interactively and iteratively, to assist in planning and implementation of testing procedures.

4) **Mobile Testing Unit:** We will deploy a customized, disability-enabled, mobile testing unit to directly deliver rapid flexible testing wherever need arises.

5) **Overcoming Testing & Vaccine Anxiety/Hesitancy:** We will conduct focus groups to identify community concerns, myths and misconceptions about testing and vaccination, and create a multimodal educational campaign that addresses and mitigates these concerns.
The Mobile Testing Unit

We will staff, equip and deploy a customized, disability-enabled, mobile unit to bring testing directly to the MCC community for optimal testing flexibility. A new van has been procured and we are working with Marketing to design a wrap similar to the UR Vision Van.
Molecular Testing for SARS-CoV-w at the URMC Central Laboratories

<table>
<thead>
<tr>
<th>Assay</th>
<th>Platform</th>
<th>Manufacturer</th>
<th>Capacity Tests/Day</th>
<th>Method</th>
<th>FDA Emergency Use Authorization</th>
</tr>
</thead>
<tbody>
<tr>
<td>TaqPath COVID-19 High-Throughput Combo Kit</td>
<td>Amplitude Solution</td>
<td>Thermo Fisher Scientific</td>
<td>3000-6000</td>
<td>RT-PCR</td>
<td>YES</td>
</tr>
<tr>
<td>cobas SARS-CoV-2</td>
<td>cobas 8800 System</td>
<td>Roche Molecular Systems</td>
<td>2000</td>
<td>RT-PCR</td>
<td>YES</td>
</tr>
<tr>
<td>Xpert Xpress SARS-CoV-2</td>
<td>GeneXpert Infinity</td>
<td>Cepheid</td>
<td>500</td>
<td>RT-PCR</td>
<td>YES</td>
</tr>
</tbody>
</table>

RADx-UP samples will be primarily tested on the Thermo Fisher Scientific Amplitude system:
- High-throughput with readily available testing reagents
- Three targets (N gene, ORF1ab gene, S gene) for higher specificity and lower risk for mutations affecting assay performance
- Automated, 3.5 hour run time

The UR Medicine Central Laboratory has tested over 750,000 respiratory specimens for SARS-CoV-2 since the beginning of the pandemic with an average TAT of 24 hours

Clinical serological testing will be performed on the Abbott Architect platform using the SARS-CoV-2 IgG assay:
- Intended for the qualitative detection of IgG against the SARS-CoV-2 nucleocapsid protein
 - High sensitivity (~97%) and specificity (~99%)
- Assay: SARS-CoV-2 IgG assay
- Platform: ARCHITECT System
- Manufacturer: Abbott Laboratories Inc
- Capacity: High-throughput (500-800 per day)
- Method: Chemiluminescent microparticle immunoassay (CMIA)
- FDA Emergency Use Authorization
Scientific Questions

How does IgG antibody reactivity against SARS-CoV-2 change over time in teachers, staff, and IDD students?

What are the platforms of IgG cross-reactivity to circulating coronavirus strains?

What are the rates of asymptomatic transmission in vaccinated staff and IDD students?
Scientific Questions and General Deliverables

Questions:

1. What testing patterns and frequency are needed to:
 - Detect asymptomatic SARS-CoV-2
 - Minimize risk of transmission of SARS-CoV-2
 - Monitor classroom immunity

2. What changes in contact, immunity, and classroom structure maximize student and staff attendance?
 - Class size
 - Contact patterns
 - Community prevalence of viral variants

Deliverables – Flexible models that could be adapted to different school staff and student configurations allowing “what if?” scenario modelling
Major Outcomes to Date

- IRB approved 3/31/21
- Enrollment began 5/11/21
- Testing began 5/21/21
- Currently 147 participants enrolled - 124 Mary Cariola staff & 23 Mary Cariola students
- 592 RT-PCR tests processed- 509 negative SARS-CoV-2 & 83 awaiting results
- 211 Finger-sticks collected on 116 unique participants (89% staff and 11% students)
- 108 Serological test results
Lessons Learned Regarding School Testing

We have experienced some issues in obtaining nasal swab specimens for PCR testing.

The issue arises mainly in the older students who are mostly able to walk, and move on their own. Distracting them to successfully collect nasal swabs has been challenging. Negative experiences from prior nasal swab specimen collection may also be a factor.

We have had better success at obtaining nasal swabs from Mary Cariola students who are younger and more “medically fragile”. They do not have the ability to stand up, push us away, dodge the nasal swab, etc.

Due to this discovery, the project team is considering the collection of saliva as an alternative to the nasal swab when that specimen is unobtainable. The Mary Cariola team has concurred that saliva collection for PCR testing could be more successful, since the kids often need help brushing their teeth and sometimes simply eating and drinking.
We’ve implemented a number of different approaches to engage with Mary Cariola’s parents and staff. Key lessons learned to date from the initiatives:

• Postcards sent in backpacks raise awareness but, with few exceptions, does not lead to action (i.e. calling about the study).

• Given the multiple competing priorities of their lives, many parents are not in a position to add one more task to their day (i.e. calling about study enrollment).

• The term research or study is a turn off to some parents so using that terminology early in the discussion may lead to a premature end to the conversation.

• Linking study outreach with existing events or activities is viable to both raise awareness and identify those interested in or potentially interested in enrolling. Individual outreach or conversations are important for many parents. For staff, engaging them through events (i.e. staff appreciation day) is a successful approach.

• Offering seasonal treats and T-shirts have a significant impact (i.e. ice cream trucks/shaved ice trucks)
Representation for Recruitment for Mary Cariola Students

Enrolled MCC Students by Age

Entire MCC Students by Age

Enrolled MCC Students by Race

Entire MCC Students by Race

Enrolled MCC Students by Gender

Entire MCC Students by Gender
Testing Fatigue

No Known Issues to Date
Developing Situation- Dr. Michael Mendoza from the Monroe County Health Department has informed the Mary Cariola team that it’s unlikely that there will be a COVID vaccine for children under 12 before the Fall. Given the Delta Variant, there’s a push for vaccination and mandated COVID testing in schools, which aligns well with our study as it offers free testing for participating Mary Cariola staff and students.
1. **Focus group interviews** with priority populations

2. **Targeted strategies to increase understanding** of the COVID-19 vaccine

3. **Effective communication tools/media** (social/digital, web, PR, testimonials)

4. **On-the-ground education** (speakers’ bureau; “table talk”)

5. **Graphic medicine** (innovative visual media and art)

Overcoming Vaccine Hesitancy

Monroe | At Least One Dose | 453,677 people | 70.6%

Of the 642,840 people 12 years of age or older in Monroe county, 70.6% or 453,677 people have received At Least One Dose.
NIH Roadmap for Medical Research initiative produced the PROMIS

- Efficient, precise, responsive and validated patient-reported outcome measure (PROM)
- Produce comparable domain-focused, PROM of health across patient subgroups and therapies
 - 11-year, $100 million effort by NIH
 - Produces validated data quickly
 - Item Response Theory
 - Computer Adaptive Testing (CAT)

PROMIS based on the Biopsychosocial Model

<table>
<thead>
<tr>
<th>Physical Health</th>
<th>Physical Function</th>
<th>Upper Extremity Mobility</th>
<th>Physical Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Symptoms</td>
<td>Fatigue</td>
<td>Itch</td>
<td>Pain</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mental Health</th>
<th>Emotional Distress</th>
<th>Anxiety</th>
<th>Depression</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Psychological Function</th>
<th>Self-Efficacy</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Social Health</th>
<th>Social Function</th>
<th>Ability to Participate in Social Roles and Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Social Relationships</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PROMIS: Patient-Reported Outcome Measurement Information System
Total, Mar 2021
3.28 million scores
280,496 unique patients

Start, Feb 2015

UR Voice: Data Collection

PROMIS CATs
44 seconds
Median time to complete assessment

4 items
Median items answered per assessment

98.2% completed

PROMIS Adult Domains
2.5 million scores (76%)

PROMIS Pediatric / Parent Proxy Domains
242,917 scores (7%)

Non-PROMIS
556,285 scores (17%)

Physical Function

Pain Interference

Depression
Key Innovations

1. **Highly Significant Population** – kids with IDD
2. **Longitudinal Serology** – assess durability of immunity in kids with IDD
3. **Mobile Testing Unit** – to reach kids at home
4. **Agent-Based Modelling** – to derive high efficiency adaptive testing regimen.
5. **Use of PROMIS** – to measure impact rapidly (and scalably); *opportunities for machine learning*
Safe Return to School
Assessing Testing Strategies in Middle & High Schools

August 9, 2021
Project Goals

• Determine the **best COVID-19 testing strategy** to limit COVID-19 transmission in middle and high schools
 • Provide easy access to free saliva-based testing to all of the school community (staff, students, household members)
 • Staff and students in some middle and high schools will be offered weekly testing

• Partner with our community in listening sessions to **better understand COVID-19 testing, vaccinations and in-person school**
How does this research study work?

Community Drive-Up COVID-19 Testing

Schools in the 5 school districts are randomly assigned. EVERYONE has access to community COVID-19 testing. Some schools will also participate in weekly school screening.

Weekly School Screening And Community Drive-Up COVID-19 Testing

When there is a positive case in the schools, we follow up with all identified school contacts.

School Contact Tracing

Contacted are called for a survey and community drive-up test 5-7 days after exposure (and are given the opportunity to join the weekly testing, if eligible).

Continued opportunity to get community COVID-19 drive-up testing until the end of study

Continued weekly school testing until the end of the study
Testing Results

389 tests amongst 289 people

39 positive tests

Both screening and community drive up testing available
Cumulative Testing Numbers (Drive up + Surveillance)

<table>
<thead>
<tr>
<th></th>
<th>Hispanic/Latino</th>
<th>Not Hispanic/Latino</th>
<th>Unknown/Not Reported</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Female</td>
<td>Male</td>
<td>Non-Binary</td>
</tr>
<tr>
<td>Black or African American</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>White</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>
Age Group Breakdown

Overall Tests
- Under 5: 226
- Five - Eleven: 60
- Twelve - Seventeen: 6
- Eighteen +: 16
- Not Reported: 81

People Tested
- Under 5: [VALUE]
- Five - Eleven: 56
- Twelve - Seventeen: 149
- Eighteen +: 3
- Not Reported: 4
Positivity Rate Including Weekly Screening

Positivity Rate (%)

- Positivity rate (with screening)
- St. Louis County Positivity Rate
Of 28 positive tests eligible for vaccination, 4 were known to be fully vaccinated.
Community Advisory Board

- CAB Composition
 - School district representatives
 - Community partners
 - Parents
 - Students
- Meets monthly
- Stipends provided
- Working to expand participation among students and parents
Key Themes

- Lead with caring
- Go beyond testing and engage community
- Improved equity and systems change should be a priority
- Clarity, transparency, and simplicity is key in all aspects of communication
 - Clarify what is meant by “safe”
- Visuals help
- Engaging students requires a unique approach
Qualitative Data Collection

• Administrator Interviews
 • Superintendents interviews complete (n=5/5)
 • School Principals recruiting and conducting interviews now (n=3/16)

• Listening Sessions
 • Parents/caregivers
 • Staff/Teachers
 • Students (n=3)
 • Recruiting now
Lessons Learned

• Relationships and trust are essential
• Continuous improvement and feedback to improve the process
• Ask and learn from the community
• Engaging CAB and Community Partners in recruitment is essential
• Participating in Back to School events and Professional Learning Meetings increases engagement
Recruitment Challenges

• Summer schedules can be obstacles
• Difficulty in reaching students to become interested in testing
 • Recruitment video being developed
 • T shirts supporting the project
• Lack of trust in testing
• Continued testing awareness for the drive-up testing
 • Social media being utilized in the districts
 • New website being developed
Next Steps

• School district meetings
• Back to school events
• Conduct listening sessions
• Expand Community Advisory Board
 • More Students and Parents
• Coordinate with community partners to support participants
• Promote vaccination
Ordinary people with extraordinary vision can redeem the soul of America by getting in what I call good trouble.

John Lewis
July 17, 2020
NY Times
Thank You