Skip to main content
  • U.S. Department of Health & Human Services
National Institutes of Health (NIH) - Turning Discovery into Health
  • Virtual Tour
  • En Español

Site Menu

  • Home
  • Health Information
    • Health Care Providers & Facilities
    • Health Info Lines
    • HealthCare.gov
    • Science Education Resources
    • NIH Clinical Research Trials and You
    • Talking to Your Doctor

    More »

    Quick Links

    • MedlinePlus Health Info
    • NIH News in Health
    • Wellness Toolkits
  • Grants & Funding
    • Grants Home Page
    • Find Funding
    • Due Dates
    • How to Apply
    • About Grants
    • Policy & Compliance
    • Grants News/Blog
    • Contracts
    • Loan Repayment

    More »

    Quick Links

    • RePORT
    • eRA Commons
    • NIH Common Fund
  • News & Events
    • News Releases
    • Digital Media Kits
    • Media Resources
    • Media Contacts
    • Images and B-roll
    • Events
    • Social Media

    More »

    Quick Links

    • NIH News in Health
    • NIH Research Matters
    • NIH Record
  • Research & Training
    • Medical Research Initiatives
    • Science Highlights
    • Science Education
    • Research in NIH Labs & Clinics
    • Training Opportunities
    • Library Resources
    • Research Resources
    • Clinical Research Resources
    • Safety, Regulation and Guidance

    More »

    Quick Links

    • PubMed
    • Stem Cell Information
    • OppNet
    • NIDB
    • NIH Blueprint for Neuroscience Research
  • Institutes at NIH
    • List of Institutes and Centers
    • NIH Office of the Director
    • Directors of NIH Institutes and Centers
    • NIH Institute and Center Contact Information

    More »

    Quick Links

    • NCI
    • NEI
    • NHLBI
    • NHGRI
    • NIA
    • NIAAA
    • NIAID
    • NIAMS
    • NIBIB
    • NICHD
    • NIDCD
    • NIDCR
    • NIDDK
    • NIDA
    • NIEHS
    • NIGMS
    • NIMH
    • NIMHD
    • NINDS
    • NINR
    • NLM
    • CC
    • CIT
    • CSR
    • FIC
    • NCATS
    • NCCIH
  • About NIH
    • Who We Are
    • What We Do
    • Jobs at NIH
    • Visitor Information
    • Frequently Asked Questions
    • Contact Us

    More »

    Quick Links

    • The NIH Director
    • Take the Virtual Tour
    • NIH…Turning Discovery Into Health®
    • Impact of NIH Research
    • Science, Health, and Public Trust

You are here

Home » News & Events » News Releases

News Releases

News Release

Thursday, August 10, 2006

New Light Microscope Can View Protein Arrangement in Cell Structures

new PALM microscopy The images depict a membrane protein in a cellular organelle known as a lysosome. The image on the right shows a convention fluorescent image of a portion of the lyososome, whereas the image on the left shows the corresponding PALM image in the region outlined.

Researchers at Howard Hughes Medical Institute’s Janelia Farm Research Campus, the National Institutes of Health, and Florida State University have developed and applied a new light microscopy technique that will allow them to determine the arrangement of proteins that make up the individual organelles, or structures, within a cell.

The microscope and the technology that make it possible are described in an article appearing on-line in the August 10 issue of Science Express. The technique was conceived by Eric Betzig, Ph.D., and Harald Hess, Ph.D. while working as independent inventors and later as investigators at Janelia Farm, which subsequently supported their effort on the project. Funding for the project was also provided by the NIH. Drs. Betzig and Hess built the microscope and demonstrated the method at the NIH, while working with Jennifer Lippincott-Schwartz, Ph.D. and her colleagues in the Cell Biology and Metabolism Branch of the National Institute of Child Health and Human Development. Also working on the project was Michael Davidson of the National High Magnetic Field Laboratory at Florida State University.

“This is a major advance that will allow us to understand the fundamental organization of the key structures within a cell,” said Elias A. Zerhouni, M.D., Director of the NIH. “What researchers learn from the new microscopy technique will provide a broad foundation for understanding the complexity of how proteins, the building blocks of cells, interact in health and disease.”

The new technique is known as photoactivated localization microscopy (PALM). It relies on the earlier pioneering effort of Dr. Lippincott-Schwartz and NIH Staff Scientist George Patterson, Ph.D. to develop a new class of molecules, called photoactivated fluorescent proteins, which emit green or yellow light when exposed to a laser, but only after being activated by brief exposure to violet light. The cell itself is coaxed to produce these molecules, which are then bound to specific proteins of interest, thereby optically marking the molecular constituents of specific cellular structures.

In a conventional optical microscope, objects less than about 200 nanometers apart cannot be distinguished from one another. The trick of the new technique is to control the violet light to activate only a few molecules at a time, so that they are statistically likely to be well separated. Even though each fluorescing molecule still appears as an approximately 200 nanometer diameter spot, the center of the spot, and hence the location of the molecule, can be determined to within 2 to 25 nanometers, depending on its brightness.

“It’s important to activate only a few fluorescent proteins at a time, or else you’d only see one bright blur of light, without being able to distinguish the individual position of the protein,” Dr. Lippincott-Schwartz said.

Repeating this process many thousands of times, a computer image is eventually created in which the positions of all the molecules are determined, often with near-molecular precision. Currently, the main tool researchers use to produce high resolution images of the structures within a cell is an electron microscope. Although electron microscopes produce a detailed image of very small structures, they cannot provide an image of the proteins that make up those structures.

With the new technique, the researchers were able to study several cellular subsystems, including the mitochondria, the structures within a cell that provide energy for the cell’s activities. The researchers were able to visualize the distribution of the proteins involved in the assembly and budding of the AIDS virus from a host cell.

Images generated by both conventional microscopy and the new PALM microscopy appear at http://www.nichd.nih.gov/new/releases/caption_palmvsconventional.cfm.

The NICHD sponsors research on development, before and after birth; maternal, child, and family health; reproductive biology and population issues; and medical rehabilitation. For more information, visit the Institute’s Web site at http://www.nichd.nih.gov/.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov.

NIH…Turning Discovery Into Health®

###

Institute/Center

National Institute of Child Health and Human Development (NICHD)

Contact

Robert Bock
Marianne Glass Miller
301-496-5133

Connect with Us

  • Subscribe to news releases
  • RSS Feed

Connect with Us

  • Contact Us
  • X
  • Facebook
  • Instagram
  • YouTube
  • Flickr
  • More Social Media from NIH

Footer

  • NIH Home
  • Virtual Tour
  • En Español
  • Visitor Information
  • Frequently Asked Questions
  • Privacy Policy
  • Disclaimers
  • Accessibility
  • NIH Website Archives
  • Nondiscrimination Notice
  • Freedom of Information Act
  • No Fear Act
  • HHS Vulnerability Disclosure
  • Office of Inspector General
  • USA.gov

NIH…Turning Discovery Into Health®

National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892

U.S. Department of Health and Human Services

Back to Top