Skip to main content
  • U.S. Department of Health & Human Services
National Institutes of Health (NIH) - Turning Discovery into Health
  • Virtual Tour
  • En Español

Site Menu

  • Home
  • Health Information
    • Health Care Providers & Facilities
    • Health Info Lines
    • HealthCare.gov
    • Science Education Resources
    • NIH Clinical Research Trials and You
    • Talking to Your Doctor

    More »

    Quick Links

    • MedlinePlus Health Info
    • NIH News in Health
    • Wellness Toolkits
  • Grants & Funding
    • Grants Home Page
    • Find Funding
    • Due Dates
    • How to Apply
    • About Grants
    • Policy & Compliance
    • Grants News/Blog
    • Contracts
    • Loan Repayment

    More »

    Quick Links

    • RePORT
    • eRA Commons
    • NIH Common Fund
  • News & Events
    • News Releases
    • Digital Media Kits
    • Media Resources
    • Media Contacts
    • Images and B-roll
    • Events
    • Social Media

    More »

    Quick Links

    • NIH News in Health
    • NIH Research Matters
    • NIH Record
  • Research & Training
    • Medical Research Initiatives
    • Science Highlights
    • Science Education
    • Research in NIH Labs & Clinics
    • Training Opportunities
    • Library Resources
    • Research Resources
    • Clinical Research Resources
    • Safety, Regulation and Guidance

    More »

    Quick Links

    • PubMed
    • Stem Cell Information
    • OppNet
    • NIDB
    • NIH Blueprint for Neuroscience Research
  • Institutes at NIH
    • List of Institutes and Centers
    • NIH Office of the Director
    • Directors of NIH Institutes and Centers
    • NIH Institute and Center Contact Information

    More »

    Quick Links

    • NCI
    • NEI
    • NHLBI
    • NHGRI
    • NIA
    • NIAAA
    • NIAID
    • NIAMS
    • NIBIB
    • NICHD
    • NIDCD
    • NIDCR
    • NIDDK
    • NIDA
    • NIEHS
    • NIGMS
    • NIMH
    • NIMHD
    • NINDS
    • NINR
    • NLM
    • CC
    • CIT
    • CSR
    • FIC
    • NCATS
    • NCCIH
  • About NIH
    • Who We Are
    • What We Do
    • Jobs at NIH
    • Visitor Information
    • Frequently Asked Questions
    • Contact Us

    More »

    Quick Links

    • The NIH Director
    • Take the Virtual Tour
    • NIH…Turning Discovery Into Health®
    • Impact of NIH Research
    • Science, Health, and Public Trust

You are here

Home » News & Events » News Releases

News Releases

News Release

Wednesday, September 20, 2023

Researchers develop new method to identify potential stroke therapies

First-of-its-kind study points to uric acid as a promising treatment for further investigation.

Scientist wearing blue gloves uses pipette to put fluid in tube. Researchers have identified uric acid as a potential therapy to enhance recovery from acute ischemic stroke using a new method for conducting preclinical animal research.Julia Koblitz / Unsplash

Researchers have identified uric acid as a potential therapy to enhance recovery from acute ischemic stroke using a new method for conducting preclinical animal research. In the study, researchers from the National Institutes of Health’s Stroke Preclinical Assessment Network (SPAN) rigorously tested the effectiveness of six novel therapies in reducing ischemic brain injury in rodents using strategies normally reserved for clinical studies in humans. The results suggest that uric acid warrants further investigation in additional studies, and potentially human clinical trials. The study was published in Science Translational Medicine.

Ischemic stroke, a leading cause of disability and death in the United States, occurs when a blood clot or other blockage in an artery cuts off blood supply to the brain. Current treatments are aimed at removing the clot by dissolving it with blood-thinners, surgically removing it from the blood vessel, or a combination of both.

Although these treatments help patients recover, scientists are seeking a therapy that could protect the brain from damage, known as a cerebroprotectant, that occurs before or during the restoration of blood flow. While previous preclinical studies in animals have identified numerous promising therapies, they failed to translate to human stroke patients in subsequent clinical trials. Many findings also did not replicate in other laboratories.

“We were faced with a critical need to redesign the entire preclinical approach,” said Francesca Bosetti, Ph.D., Pharm.D., program director at NINDS. “SPAN successfully applied well known clinical research practices to a preclinical trial—randomization, pre-determined sample sizes, treatment masking, blinded analysis, and efforts to make results reproducible in other laboratories.”

In the current study, six candidate therapies were selected based on prior research showing evidence that they could potentially treat stroke. Animals were randomly assigned to treatment and researchers from six different labs tested one of the therapies or a placebo. The efficacy of each treatment was assessed by giving animals a series of behavioral tests. After collecting these data, researchers used a new statistical method to evaluate the therapies at four points in the testing process. They also measured MRI brain scans of lesion volumes. Based on the test results, treatments that failed to show sufficient efficacy were dropped.

In addition to incorporating scientific rigor into preclinical testing, researchers used animal models that resembled typical stroke patients. The study included young mice and rats, aging mice, mice with diet-induced obesity or hyperglycemia, and rats with spontaneous hypertension, with equal numbers of males and females.

“SPAN gives us a head start in screening lots of stroke therapies, and rapidly and efficiently finding drugs that have a higher likelihood of working in human clinical trials,” said Patrick D. Lyden, M.D., professor of physiology and neuroscience at the Zilkha Neurogenetic Institute and professor in the Department of Neurology at the USC Keck School of Medicine, Los Angeles, and principal investigator of the SPAN coordinating center.

Uric acid was the only candidate that passed the efficacy boundary through all phases of analysis. The other interventions, which included four drugs approved by the U.S. Food and Drug Administration to treat other conditions and remote ischemic conditioning, an experimental medical procedure, were dropped after the second or third evaluation.

Uric acid has previously been tested in stroke patients, but not in combination with the clot removal treatment modeled by the study, suggesting that the drug could do well in future trials. However, investigators recommend further testing in animal models before clinical trials in humans.

In the next research phase, which began earlier this year, the SPAN network will expand to include more testing sites and evaluate five additional cerebroprotective interventions.

“SPAN is a collaborative effort by many labs to document reproducible effects in animal models of stroke that mimic treatments in patients,” said Walter J. Koroshetz, M.D., director of NIH’s National Institute of Neurological Disorders and Stroke (NINDS), which funds SPAN. “We now have a feasible preclinical research method to help identify therapies with a higher chance of success in clinical trials.”

SPAN is composed of a coordinating center at the University of Southern California, Los Angeles, and six research laboratories at Johns Hopkins University, Baltimore; Massachusetts General Hospital, Boston, Yale University, New Haven, Connecticut; the Medical College of Georgia at Augusta University; the University of Iowa, Iowa City; and the University of Texas Health Science Center at Houston.

The study was supported in part by the NINDS (U24NS113452, U01NS113356, U01NS113443, U01NS113445, U01NS113388, U01NS113451,U01NS113444, R01NS099455, R01NS112511, R01NS110378, R01NS117565, R01NS102583, R01NS109910), the National Heart Lung and Blood Institute (R35HL139926), National Center for Advancing Translational Sciences (UL1TR001881), and the National Institute of Biomedical Imaging and Bioengineering (P41EB015922). Author Ryan P. Cabeen is supported in part the Chan Zuckerberg Initiative. Aging mice were provided by the National Institute of Aging’s aged rodent colonies.

NINDS is the nation’s leading funder of research on the brain and nervous system. The mission of NINDS is to seek fundamental knowledge about the brain and nervous system and to use that knowledge to reduce the burden of neurological disease.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov.

NIH…Turning Discovery Into Health®

Article

Lyden, P.D., et al. A multi-laboratory preclinical trial in rodents to assess treatment candidates for acute ischemic stroke. Science Translational Medicine. September 20, 2023. DOI: 10.1126/scitranslmed.adg8656.

###

Institute/Center

National Institute of Neurological Disorders and Stroke (NINDS)

Contact

Nina Lichtenberg
301-496-5751

Connect with Us

  • Subscribe to news releases
  • RSS Feed

Connect with Us

  • Contact Us
  • X
  • Facebook
  • Instagram
  • YouTube
  • Flickr
  • More Social Media from NIH

Footer

  • NIH Home
  • Virtual Tour
  • En Español
  • Visitor Information
  • Frequently Asked Questions
  • Privacy Policy
  • Disclaimers
  • Accessibility
  • NIH Website Archives
  • Nondiscrimination Notice
  • Freedom of Information Act
  • No Fear Act
  • HHS Vulnerability Disclosure
  • Office of Inspector General
  • USA.gov

NIH…Turning Discovery Into Health®

National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892

U.S. Department of Health and Human Services

Back to Top