Skip to main content
  • U.S. Department of Health & Human Services
National Institutes of Health (NIH) - Turning Discovery into Health
  • Virtual Tour
  • En Español

Site Menu

  • Home
  • Health Information
    • Health Care Providers & Facilities
    • Health Info Lines
    • HealthCare.gov
    • Science Education Resources
    • NIH Clinical Research Trials and You
    • Talking to Your Doctor

    More »

    Quick Links

    • MedlinePlus Health Info
    • NIH News in Health
    • Wellness Toolkits
  • Grants & Funding
    • Grants Home Page
    • Find Funding
    • Due Dates
    • How to Apply
    • About Grants
    • Policy & Compliance
    • Grants News/Blog
    • Contracts
    • Loan Repayment

    More »

    Quick Links

    • RePORT
    • eRA Commons
    • NIH Common Fund
  • News & Events
    • News Releases
    • Digital Media Kits
    • Media Resources
    • Media Contacts
    • Images and B-roll
    • Events
    • Social Media

    More »

    Quick Links

    • NIH News in Health
    • NIH Research Matters
    • NIH Record
  • Research & Training
    • Medical Research Initiatives
    • Science Highlights
    • Science Education
    • Research in NIH Labs & Clinics
    • Training Opportunities
    • Library Resources
    • Research Resources
    • Clinical Research Resources
    • Safety, Regulation and Guidance

    More »

    Quick Links

    • PubMed
    • Stem Cell Information
    • OppNet
    • NIDB
    • NIH Blueprint for Neuroscience Research
  • Institutes at NIH
    • List of Institutes and Centers
    • NIH Office of the Director
    • Directors of NIH Institutes and Centers
    • NIH Institute and Center Contact Information

    More »

    Quick Links

    • NCI
    • NEI
    • NHLBI
    • NHGRI
    • NIA
    • NIAAA
    • NIAID
    • NIAMS
    • NIBIB
    • NICHD
    • NIDCD
    • NIDCR
    • NIDDK
    • NIDA
    • NIEHS
    • NIGMS
    • NIMH
    • NIMHD
    • NINDS
    • NINR
    • NLM
    • CC
    • CIT
    • CSR
    • FIC
    • NCATS
    • NCCIH
  • About NIH
    • Who We Are
    • What We Do
    • Jobs at NIH
    • Visitor Information
    • Frequently Asked Questions
    • Contact Us

    More »

    Quick Links

    • The NIH Director
    • Take the Virtual Tour
    • NIH…Turning Discovery Into Health®
    • Impact of NIH Research
    • Science, Health, and Public Trust

You are here

Home » News & Events » News Releases

News Releases

News Release

Friday, September 30, 2016

Researchers find a gap in the brain’s firewall against Parkinson’s disease

NIH-funded mouse study identifies a key player in the progression of the disorder

Image of laboratory grown neurons Propagating toxic ɑ-synuclein fibrils - When neurons were grown in a dish (nuclei shown in blue) only those containing LAG3 protein (green) pulled toxic ɑ-synuclein fibrils (red) inside their cell bodies.Courtesy of Johns Hopkins University School of Medicine

In a study in mice, researchers found that they could reduce the progression of the toxic aggregates of a protein known as α-synuclein that are found in the brains of Parkinson’s disease patients. The results suggest that another protein called lymphocyte-activation gene 3 (LAG3) plays a role in transmitting α-synuclein aggregates from one brain cell to another and could provide a possible target to slow the progression of Parkinson’s disease. The study, published in Science, was partially funded by the National Institutes of Health’s National Institute of Neurological Disorders and Stroke (NINDS).

“This study represents a significant advance in understanding the neurobiological changes underlying Parkinson’s disease,” said Beth-Anne Sieber, Ph.D., a program director at NINDS. “The identification of LAG3 as a mediator in transmitting abnormal α-synuclein between neurons provides both insight into the disease mechanism and a potential therapeutic target for the disease.”

Analogous to how a computer virus corrupts data, the presence of abnormal α-synuclein in neurons can damage healthy α-synuclein protein, which promotes the formation of additional aggregates. These aggregates then pass from one neuron to another just as computer viruses move to other computers on the same network.

“In looking for ways to slow the progression of Parkinson’s disease, we were interested to see how abnormal α-synuclein enters neurons. Therefore, we began by looking for proteins that would be involved in that process,” said Ted M. Dawson, M.D., Ph.D., director of the Institute for Cell Engineering and the NINDS Morris K. Udall Centers of Excellence for Parkinson's Disease Research at Johns Hopkins University School of Medicine in Baltimore, and senior author of this study.  

Dr. Dawson and his colleagues used a synthetic form of abnormal ɑ-synuclein, called pre-formed fibrils, to induce Parkinson’s disease-like symptoms and ultimately focused on the protein LAG3 based on its role as a transmembrane protein and the fact that it binds to fibrils much more tightly than healthy α-synuclein protein. Transmembrane proteins are large molecules with components located both on the interior and the exterior of cells; some transmembrane proteins function as gatekeepers that allow specific molecules to enter or exit cells.

To test the role of LAG3, Dr. Dawson’s group compared normal mice with those that lacked the gene for LAG3 and were unable to make that specific protein. When normal mice were injected with α-synuclein fibrils, they quickly developed Parkinson’s disease-like symptoms, including changes in movement, grip strength, and the eventual death of dopamine neurons, the type of brain cell most affected by the disease. However, the mice lacking LAG3 that received fibril injections appeared to have normal grip strength and movement and had no significant loss of dopamine neurons.

Dr. Dawson’s team also looked at neurons that had been removed from both types of mice and grown in culture dishes. When α-synuclein fibrils were added to normal neurons, they were quickly pulled into the cells and passed along to neighboring cells; however, this was seen only in very few neurons from the mice that lacked LAG3.

“We knew from these experiments that LAG3 was important for the neurons’ ability to take up α-synuclein fibrils,” said Dr. Dawson. “Antibodies that block the activity of LAG3 are being tested in clinical trials as a form of cancer immunotherapy. We were therefore curious to see whether we could use similar antibodies to block the function of LAG3.”

Neurons treated with the LAG3 antibodies behaved similarly to the neurons that lacked LAG3.  There was a considerable decrease in their ability to take up fibrils and to pass them on to neighboring neurons. These results suggested that LAG3 function could be blocked by antibodies, providing a possible means to slow or stop the progression of Parkinson’s disease.

Dr. Dawson and his colleagues are currently testing the LAG3 antibody in animal models of Parkinson’s disease to further explore possible therapeutic and protective effects against the progression of disease symptoms.

The study was supported by the NIH (NS38377) with additional funding provided by the JPB Foundation.

The NINDS is the nation’s leading funder of research on the brain and nervous system. The mission of NINDS is to seek fundamental knowledge about the brain and nervous system and to use that knowledge to reduce the burden of neurological disease.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov.

NIH…Turning Discovery Into Health®

Reference

Mao et al. Pathological α-synuclein transmission initiated by binding lymphocyte-activation gene 3. Science doi: 10.1126/science.aah3374

Related Links

NINDS Parkinson's Disease Information Page

Parkinson's Disease: Challenges, Progress, and Promise

###

Institute/Center

National Institute of Neurological Disorders and Stroke (NINDS)

Contact

Carl P. Wonders
301-496-5751

Connect with Us

  • Subscribe to news releases
  • RSS Feed

Connect with Us

  • Contact Us
  • X
  • Facebook
  • Instagram
  • YouTube
  • Flickr
  • More Social Media from NIH

Footer

  • NIH Home
  • Virtual Tour
  • En Español
  • Visitor Information
  • Frequently Asked Questions
  • Privacy Policy
  • Disclaimers
  • Accessibility
  • NIH Website Archives
  • Nondiscrimination Notice
  • Freedom of Information Act
  • No Fear Act
  • HHS Vulnerability Disclosure
  • Office of Inspector General
  • USA.gov

NIH…Turning Discovery Into Health®

National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892

U.S. Department of Health and Human Services

Back to Top