Skip to main content
  • U.S. Department of Health & Human Services
National Institutes of Health (NIH) - Turning Discovery into Health
  • NIH Employee Intranet
  • Staff Directory
  • En Español

Site Menu

  • Home
  • Health Information
    • Health Care Providers & Facilities
    • Health Info Lines
    • HealthCare.gov
    • Science Education Resources
    • NIH Clinical Research Trials and You
    • Talking to Your Doctor

    More »

    Quick Links

    • MedlinePlus Health Info
    • NIH News in Health
    • Wellness Toolkits
  • Grants & Funding
    • Grants Home Page
    • Find Funding
    • Due Dates
    • How to Apply
    • About Grants
    • Policy & Compliance
    • Grants News/Blog
    • Contracts
    • Loan Repayment

    More »

    Quick Links

    • RePORT
    • eRA Commons
    • NIH Common Fund
  • News & Events
    • News Releases
    • Digital Media Kits
    • Media Resources
    • Media Contacts
    • Images and B-roll
    • Events
    • Social Media

    More »

    Quick Links

    • NIH News in Health
    • NIH Research Matters
    • NIH Record
  • Research & Training
    • Medical Research Initiatives
    • Science Highlights
    • Science Education
    • Research in NIH Labs & Clinics
    • Training Opportunities
    • Library Resources
    • Research Resources
    • Clinical Research Resources
    • Safety, Regulation and Guidance

    More »

    Quick Links

    • PubMed
    • Stem Cell Information
    • OppNet
    • NIDB
    • NIH Blueprint for Neuroscience Research
  • Institutes at NIH
    • List of Institutes and Centers
    • NIH Office of the Director
    • Directors of NIH Institutes and Centers
    • NIH Institute and Center Contact Information

    More »

    Quick Links

    • NCI
    • NEI
    • NHLBI
    • NHGRI
    • NIA
    • NIAAA
    • NIAID
    • NIAMS
    • NIBIB
    • NICHD
    • NIDCD
    • NIDCR
    • NIDDK
    • NIDA
    • NIEHS
    • NIGMS
    • NIMH
    • NIMHD
    • NINDS
    • NINR
    • NLM
    • CC
    • CIT
    • CSR
    • FIC
    • NCATS
    • NCCIH
  • About NIH
    • Who We Are
    • What We Do
    • Jobs at NIH
    • Visitor Information
    • Frequently Asked Questions
    • Contact Us

    More »

    Quick Links

    • The NIH Director
    • The NIH Almanac
    • NIH…Turning Discovery Into Health®
    • Impact of NIH Research
    • Science, Health, and Public Trust

You are here

Home » News & Events » News Releases

News Releases

News Release

Wednesday, August 27, 2014

Scientists plug into a learning brain

NIH-funded study provides a neural explanation for why some skills are easier to learn than others.

Illustration of brain area tested in study Scientists mapped neural activity patterns (white dots) in a learning brain. They found that learning occurs faster when it only requires existing patterns of activity (red box) than when it needs to use patterns outside of the red box.Batista lab, University of Pittsburgh

Learning is easier when it only requires nerve cells to rearrange existing patterns of activity than when the nerve cells have to generate new patterns, a study of monkeys has found. The scientists explored the brain’s capacity to learn through recordings of electrical activity of brain cell networks. The study was partly funded by the National Institutes of Health.

“We looked into the brain and may have seen why it’s so hard to think outside the box,” said Aaron Batista, Ph.D., an assistant professor at the University of Pittsburgh and a senior author of the study published in Nature, with Byron Yu, Ph.D., assistant professor at Carnegie Mellon University, Pittsburgh.

The human brain contains nearly 86 billion neurons, which communicate through intricate networks of connections. Understanding how they work together during learning can be challenging. Dr. Batista and his colleagues combined two innovative technologies, brain-computer interfaces and machine learning, to study patterns of activity among neurons in monkey brains as the animals learned to use their thoughts to move a computer cursor.

“This is a fundamental advance in understanding the neurobiological patterns that underlie the learning process,” said Theresa Cruz, Ph.D., a program official at the National Center for Medical Rehabilitations Research at NIH’s Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD). “The findings may eventually lead to new treatments for stroke as well as other neurological disorders.”

Brain-computer interfaces seek to turn thoughts into action. With small surgically implanted electrodes, researchers can simultaneously monitor the electrical activity of hundreds of neurons. A computer converts the signals into commands to move an external device, such as a robotic arm or a computer cursor. Brain-computer interfaces are being developed to help paralyzed patients as well as to study the function of healthy brains.

“This evolving technology is a powerful tool for brain research,” said Daofen Chen, Ph.D., a program director at the National Institute of Neurological Disorders and Stroke (NINDS), part of NIH. “It helps scientists study the dynamics of brain circuits that may explain the neural basis of learning.”

In this study, the research team used brain-computer interfaces in two animals to examine learning in the motor cortex, a part of the brain that controls movement. The firing patterns of the neurons they recorded were used to control a computer cursor. As the animals learned to move the cursor to a designated spot on the monitor, the computer used machine learning to map brain cell activity to cursor movement. Machine learning is a method of programming a computer to learn and constantly adjust its commands based on previous data or experience. In this case, it created a feedback loop between the animal and the computer, which improved the animal’s ability to use its thoughts to move the cursor.

“Just as Netflix uses machine learning to predict the movies we’d like to watch, we used it to characterize the activity patterns that the brain produced during learning,” said Dr. Yu.

At first, the scientists noticed that the ensemble of neurons recorded in each animal had a small set of natural, or favored, firing patterns that were used to move the cursor, which they called the “intrinsic manifold.” After determining the intrinsic manifold, the team reprogrammed the map between neural activity and cursor movement. For instance, if a firing pattern originally caused the cursor to move to the top of the screen, then the interface would move the cursor to the bottom. The team then observed whether the animals could learn to generate the appropriate neural activity patterns to compensate for the changes.

“It’s as if we turned a computer mouse upside down in a person’s hand and asked him to click on an icon, except the mouse is entirely within the subject’s brain,” said Patrick Sadtler, a Ph.D. candidate at the University of Pittsburgh, who is the lead author of the study.

The scientists discovered that the monkeys easily relearned how to move the cursor if they could use patterns within the intrinsic manifold in new ways. In contrast, learning was more difficult when the interface required patterns of neural activity that were outside of the intrinsic manifold.

“It appears that the brain sets constraints on the speed with which we learn new things. Characterizing those constraints might enable us to predict which skills will be quicker to learn, and which might take longer,” said Dr. Batista. He and his colleagues speculated that, for humans, thinking outside the box requires more difficult changes in neural activity.

This work was supported by grants from the NICHD (HD071686), NINDS (NS065065, NS076405), National Science Foundation (DGE-0549352), and the Burroughs Welcome Fund.

For more information on brain research, visit: http://www.ninds.nih.gov

For more information on child health and development, visit: http://www.nichd.nih.gov/Pages/index.aspx

The NINDS is the nation’s leading funder of research on the brain and nervous system. The mission of NINDS is to seek fundamental knowledge about the brain and nervous system and to use that knowledge to reduce the burden of neurological disease.

The Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), sponsors research on development, before and after birth; maternal, child, and family health; reproductive biology and population issues; and medical rehabilitation.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov.

NIH…Turning Discovery Into Health®

###

Institute/Center

Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)

National Institute of Neurological Disorders and Stroke (NINDS)

Contact

Christopher G. Thomas
301-496-5751
Robert Bock
301-496-5133

Connect with Us

  • Subscribe to news releases
  • RSS Feed

Connect with Us

  • Contact Us
  • Twitter
  • Facebook
  • Instagram
  • YouTube
  • Flickr
  • More Social Media from NIH

Footer

  • NIH Home
  • En Español
  • Site Map
  • Visitor Information
  • Frequently Asked Questions
  • Web Policies and Notices
  • NIH Website Archives
  • Freedom of Information Act
  • No Fear Act
  • HHS Vulnerability Disclosure
  • Office of Inspector General
  • USA.gov – Government Made Easy

NIH…Turning Discovery Into Health®

National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892

U.S. Department of Health and Human Services

Back to Top